BZOJ1096 ZJOI2007 仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏.由于地形的不同,在不同工厂建立仓库的费用可能是不同的.第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库的费用是Ci.对于没有建…
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5482  Solved: 2448[Submit][Status][Discuss] Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先…
题目背景 小B的班级数学学到多项式乘法了,于是小B给大家出了个问题:用编程序来解决多项式乘法的问题. 题目描述 L公司有N个工厂,由高到底分布在一座山上. 工厂1在山顶,工厂N在山脚. 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用. 突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏. 由于地形的不同,在不同工厂建立仓库的费用可能是不同的.第i个工厂目前已有成品Pi件,在第i个…
Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5790  Solved: 2597[Submit][Status][Discuss] Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被…
Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏.由于地形的不同,在不同工厂建立仓库的费用可能是不同的.第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库的费用是Ci.对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏…
原文链接http://www.cnblogs.com/zhouzhendong/p/8696410.html 题目传送门 - BZOJ1096 题意 给定两个序列$a,b,X$,现在划分$a$序列. 被划分出来的段$[j,i]$的花费为$a_i+\sum_{k=j+1}^{i}(X_i-X_k)b_k$. 一种划分方式的花费就是每一段的花费之和. 问最小花费. 序列长度$\leq 10^6$. 题解 这题是BZOJ3437的升级版(其实也没升多少……,不仅代码我是几乎原样复制到,连题解我几乎都是…
传送门 斜率优化dp经典题. 令f[i]表示i这个地方修建仓库的最优值,那么答案就是f[n]. 用dis[i]表示i到1的距离,sump[i]表示1~i所有工厂的p之和,sum[i]表示1~i所有工厂的p*dis之和. 那么有状态转移方程: f[i]=min(f[j]+dis[i]∗(sump[i−1]−sump[j])−(sum[i]−sum[j])+c[i])" role="presentation" style="position: relative;&quo…
Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4193  Solved: 1845 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏.由于地形的不同,在不同工厂建立仓库的费用可能…
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1096 分析: 假设1~10,如果在3 6 10建立仓库,那么当前建立仓库决策下的最优值肯定是1~2进3号仓库,4~5进6号仓库,7~9进10号仓库.也就是说仓库把1~n分成了若干段,每个段的所有点都去最近的下面那个仓库点. 于是可以写出朴素的方程: f[i]=min{f[j]+w[j][i]}+c[i] 其中w[j][i]=(x[i]-x[j+1])*p[j+1]+(x[i]-x[j…
方程: $\Large f(i)=min(f(j)+\sum\limits_{k=j+1}^{i}(x_i-x_k)*p_k)+c_i$ 显然这样的方程复杂度为$O(n^3)$极限爆炸,所以我们要换一个方程 设$S(i)=\sum\limits_{k=1}^i(x_n-x_k)*p_k$且$A(i)=\sum\limits_{k=1}^ip_k$ 则$S(i)-S(j)=\sum\limits_{k=j+1}^i(x_n-x_k)*p_k$,这和原方程很像 最终方程就可以化成 $\Large f…