Polya定理:设G={π1,π2,π3........πn}是X={a1,a2,a3.......an}上一个置换群,用m中颜色对X中的元素进行涂色,那么不同的涂色方案数为:1/|G|*(mC(π1)+mC(π2)+mC(π3)+...+mC(πk)). 其中C(πk)为置换πk的循环节的个数. Polya定理的基础应用. 你得算出旋转和翻转时,每种置换的循环节数. 旋转时,每种置换的循环节数为gcd(n,i): 翻转时,若n为奇数,共有n个循环节数为n+1>>1的置换, 若n为偶数,共有n…