huffle与permutation的区别 函数shuffle与permutation都是对原来的数组进行重新洗牌(即随机打乱原来的元素顺序):区别在于shuffle直接在原来的数组上进行操作,改变原来数组的顺序,无返回值.而permutation不直接在原来的数组上进行操作,而是返回一个新的打乱顺序的数组,并不改变原来的数组. 示例: a = np.arange(12) print a np.random.shuffle(a) print a print a = np.arange(12) p…
0. numpy.random中的shuffle和permutation numpy.random.shuffle(x) and numpy.random.permutation(x),这两个有什么不同,或者说有什么关系? 答: np.random.permutation与np.random.shuffle有两处不同: 如果传给permutation一个矩阵,它会返回一个洗牌后的矩阵副本:而shuffle只是对一个矩阵进行洗牌,无返回值. 如果传入一个整数,它会返回一个洗牌后的arange. 上…
对于算法书买了一本又一本却没一本读完超过 10%,Leetcode 刷题从来没坚持超过 3 天的我来说,算法能力真的是渣渣.但是,今天决定写一篇跟算法有关的文章.起因是读了吴师兄的文章<扫雷与算法:如何随机化的布雷(二)之洗牌算法>.因为扫雷这个游戏我是写过的,具体见:<Python:游戏:扫雷>. 游戏开始的时候需要随机布雷.扫雷的高级是 16 × 30 的网格,一共有 99 个雷.如果从 0 开始给所有网格做标记,那么布雷的问题就成了从 480 个数中随机选取 99 个数.第一…
参考API:https://docs.scipy.org/doc/numpy/reference/routines.random.html 1. numpy.random.shuffle()   API中关于该函数是这样描述的: Modify a sequence in-place by shuffling its contents. This function only shuffles the array along the first axis of a multi-dimensional…
numpy中有一些常用的用来产生随机数的函数,randn()和rand()就属于这其中. numpy.random.randn(d0, d1, …, dn)是从标准正态分布中返回一个或多个样本值. numpy.random.rand(d0, d1, …, dn)的随机样本位于[0, 1)之间. [code] import numpy as np arr1 = np.random.randn(2,4) print(arr1) print('*****************************…
本文转载自:https://blog.csdn.net/u010758410/article/details/71799142 numpy中有一些常用的用来产生随机数的函数,randn()和rand()就属于这其中. numpy.random.randn(d0, d1, …, dn)是从标准正态分布中返回一个或多个样本值. numpy.random.rand(d0, d1, …, dn)的随机样本位于[0, 1)中. 代码: import numpy as np arr1 = np.random…
转自: https://blog.csdn.net/u010758410/article/details/71799142 numpy中有一些常用的用来产生随机数的函数,randn()和rand()就属于这其中. numpy.random.randn(d0, d1, …, dn)是从标准正态分布中返回一个或多个样本值. numpy.random.rand(d0, d1, …, dn)的随机样本位于[0, 1)中. 代码: import numpy as np arr1 = np.random.r…
numpy.random.shuffle(x) Modify a sequence in-place by shuffling its contents. Parameters: x : array_like The array or list to be shuffled. Returns: None Examples >>> >>> arr = np.arange(10) >>> np.random.shuffle(arr) >>>…
numpy中有一些常用的用来产生随机数的函数,randn()和rand()就属于这其中. numpy.random.randn(d0, d1, …, dn)是从标准正态分布中返回一个或多个样本值. numpy.random.rand(d0, d1, …, dn)的随机样本位于[0, 1)之间.…
1.numpy乘法运算中"*"是数组元素逐个计算 >>> import numpy as np >>> a = np.array([[2,3],[3,4]]) >>> b = np.array([[3,4],[5,6]]) >>> c = a * b >>> c array([[ 6, 12], [15, 24]]) >>> 2.numpy乘法运算中dot是按照矩阵乘法的规则来运…