tensorflow 优化图】的更多相关文章

当我们把训练好的tensorflow训练图拿来进行预测时,会有多个训练时生成的节点,这些节点是不必要的,我们需要在预测的时候进行删除. 下面以bert的图为例,进行优化 def optimize_graph(self, checkpoint_file, model_config): import json tf = self.import_tf() from tensorflow.python.tools.optimize_for_inference_lib import optimize_fo…
背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 在经过TensorFlow的Placer策略模块调整之后,下一步就是根据Placement信息对Graph做切割,然后分发到不同的Device上去执行的过程了.在对Graph做切割时,为了保证跨Device执行的逻辑与切割前一致并保证原图中Node节点之间的依赖关系不受到破坏,不但需要插入Send.Recv通信节点对,还需要维护相对复杂的Control Edge.这些功能被设…
现代英特尔® 架构上的 TensorFlow* 优化 转自:https://software.intel.com/zh-cn/articles/tensorflow-optimizations-on-modern-intel-architecture 英特尔:Elmoustapha Ould-Ahmed-Vall,Mahmoud Abuzaina,Md Faijul Amin,Jayaram Bobba,Roman S Dubtsov,Evarist M Fomenko,Mukesh Ganga…
高中数学学过,函数在一阶导数为零的地方达到其最大值和最小值.梯度下降算法基于相同的原理,即调整系数(权重和偏置)使损失函数的梯度下降. 在回归中,使用梯度下降来优化损失函数并获得系数.本节将介绍如何使用 TensorFlow 的梯度下降优化器及其变体. 按照损失函数的负梯度成比例地对系数(W 和 b)进行更新.根据训练样本的大小,有三种梯度下降的变体: Vanilla 梯度下降:在 Vanilla 梯度下降(也称作批梯度下降)中,在每个循环中计算整个训练集的损失函数的梯度.该方法可能很慢并且难以…
TensorFlow优化器及用法 函数在一阶导数为零的地方达到其最大值和最小值.梯度下降算法基于相同的原理,即调整系数(权重和偏置)使损失函数的梯度下降. 在回归中,使用梯度下降来优化损失函数并获得系数.本文将介绍如何使用 TensorFlow 的梯度下降优化器及其变体. 按照损失函数的负梯度成比例地对系数(W 和 b)进行更新.根据训练样本的大小,有三种梯度下降的变体: Vanilla 梯度下降:在 Vanilla 梯度下降(也称作批梯度下降)中,在每个循环中计算整个训练集的损失函数的梯度.该…
本文基于tensorflow-v1.15分支,简单分析下TensorFlow中的优化器. optimizer = tf.train.GradientDescentOptimizer(learning_rate=.05) train_op = optimizer.minimize(loss) 当我们调用optimizer.minimize()时,其内部会调用两个方法compute_gradients()和apply_gradients(),分别用来计算梯度和使用梯度更新权重,其核心逻辑如下所示.…
tensorflow中的优化器主要是各种求解方程的方法,我们知道求解非线性方程有各种方法,比如二分法.牛顿法.割线法等,类似的,tensorflow中的优化器也只是在求解方程时的各种方法. 比较常用的是:·tf.train.GradientDescentOptimizer()·梯度下降优化器,之前我们一直在使用. 又比如:tf.train.MomentumOptimizer,它会有短时记忆的优化功能. 更多的关于优化器的文档参考(需FQ):https://www.tensorflow.org/a…
Tensorflow一些常用基本概念与函数(2) 1. 图(Graph)的核心数据结构 tf.Graph.__init__:建立一个空图: tf.Graph.as_default():一个将某图设置为默认图,并返回一个上下文管理器,常与 with 结构相搭配: g = tf.Graph() with g.as_default(): # Define operations and tensors in `g`. c = tf.constant(30.0) assert c.graph is g c…
# coding: utf-8 import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data print("hello") #载入数据集mnist = input_data.read_data_sets("F:\\TensorflowProject\\MNIST_data",one_hot=True) #每个批次的大小,训练时一次100张放入神经网络中训练batch…