推荐算法 pd】的更多相关文章

from django.db import connection select_sql = 'select * from model' datas = pd.read_sql(select_sql, connection) # <pandas.core.frame.DataFrame'> temp = datas.iloc[:, 2:] # 取出所有数据的 除了前两个字段 tp = temp.sum(axis=0) # 所有字段纵向相加 top_sorts = tp.sort_values(a…
原书作者使用字典dict实现推荐算法,并且惊叹于18行代码实现了向量的余弦夹角公式. 我用pandas实现相同的公式只要3行. 特别说明:本篇笔记是针对矩阵数据,下篇笔记是针对条目数据. ''' 基于用户的协同推荐 矩阵数据 ''' import pandas as pd from io import StringIO import json #数据类型一:csv矩阵(用户-商品)(适用于小数据量) csv_txt = '''"user","Blues Traveler&qu…
最近在为机器学习结合推荐算法的优化方法和数据来源想办法.抱着学习的态度继续解读19-AnalytiCup的冠军源码. 第一部分itemcf解读的连接:https://www.cnblogs.com/missouter/p/12701875.html 第二.三部分主要是特征提取和排序.在这篇博客中将作展开. 1.generate_static_features.ipynb 标题简洁明了 提取静态特征 import pandas as pd import numpy as np def reduce…
数据集: https://grouplens.org/datasets/movielens/ ml-latest-small 协同过滤算法理论基础 https://blog.csdn.net/u012995888/article/details/79077681 相似度计算主要有三个经典算法:余弦定理相似性度量.欧氏距离相似度度量和杰卡德相似性度量.下面分别进行说明: 余弦定理相似性度量       三角形余弦定理公式:,由该公式可知角A越小,bc两边越近.当A为0度时,bc两边完全重合. 当b…
转载自:http://blog.fens.me/mahout-recommendation-api/ Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等. 从2011年…
推荐算法大致分为: 基于物品和用户本身 基于关联规则 基于模型的推荐 基于物品和用户本身 基于物品和用户本身的,这种推荐引擎将每个用户和每个物品都当作独立的实体,预测每个用户对于每个物品的喜好程度,这些信息往往是用一个二维矩阵描述的.由于用户感兴趣的物品远远小于总物品的数目,这样的模型导致大量的数据空置,即我们得到的二维矩阵往往是一个很大的稀疏矩阵.同时为了减小计算量,我们可以对物品和用户进行聚类, 然后记录和计算一类用户对一类物品的喜好程度,但这样的模型又会在推荐的准确性上有损失. 基于关联规…
大数据时代开始流行推荐算法,所以作者写了一篇教程来介绍apriori推荐算法. 推荐算法大致分为: 基于物品和用户本身 基于关联规则 基于模型的推荐 基于物品和用户本身 基于物品和用户本身的,这种推荐引擎将每个用户和每个物品都当作独立的实体,预测每个用户对于每个物品的喜好程度,这些信息往往是用一个二维矩阵描述的.由于用户感兴趣的物品远远小于总物品的数目,这样的模型导致大量的数据空置,即我们得到的二维矩阵往往是一个很大的稀疏矩阵.同时为了减小计算量,我们可以对物品和用户进行聚类, 然后记录和计算一…
本文内容 用户评分表 曼哈顿(Manhattan)距离 欧式(Euclidean)距离 余弦相似度(cos simliarity) 推荐算法以及数据挖掘算法,计算"距离"是必须的~最近想搭一个推荐系统,看了一些资料和书<写给程序员的数据挖掘指南>,此书不错,推荐大家看看,讲解得很透彻,有理论有代码,还有相关网站.看完后,你立刻就能把推荐算法应用在你的项目中~ 本文先主要说明如何计算物品或用户之间的"距离",陆续会介绍推荐算法本身~ 用户评分表 大体上,推…
本文内容 最近看<写给程序员的数据挖掘指南>,研究推荐算法,书中的测试数据集是 Book-Crossing Dataset 提供的亚马逊用户对书籍评分的真实数据.推荐大家看本书,写得不错,立刻就能对推荐算法上手,甚至应用到你的项目中. Book-Crossing Dataset 提供两种格式的数据集:CVS 格式和 SQL dump,问题是: 如果你有 UE 打开 cvs 文件,有乱码.无论如何转换编码,都不行~因为,这个文件是亚马逊通过程序持久化后,再导出来的.你还会发现,文件中有 html…
美团网基于机器学习方法的POI品类推荐算法 前言 在美团商家数据中心(MDC),有超过100w的已校准审核的POI数据(我们一般将商家标示为POI,POI基础信息包括:门店名称.品类.电话.地址.坐标等).如何使用这些已校准的POI数据,挖掘出有价值的信息,本文进行了一些尝试:利用机器学习方法,自动标注缺失品类的POI数据.例如,门店名称为"好再来牛肉拉面馆"的POI将自动标注"小吃"品类. 机器学习解决问题的一般过程:本文将按照:1)特征表示:2)特征选择:3)基…