pandas.DataFrame.to_excel】的更多相关文章

1. file_name = 'aa.xlsx' df.to_excel(file_name) #这种file_name不能重复,已经生成过的就会报错 writer = pd.ExcelWriter(file_name); df.to_excel(writer) #只要file_name 没被占用,就可以覆盖写入…
这几天在用 Python3 研究一个爬虫,最后一个需求是把爬下来的20+个csv文件整合到一个excel表里的不同sheets. 初版的核心代码如下: while year <= 2018: csvPath = sys.path[0] + '/result/%d.csv' % year excelPath = sys.path[0] + '/result.xlsx' csvReader = pandas.read_csv(csvPath, encoding='utf_8_sig') excelW…
Pandas DataFrame数据的增.删.改.查 https://blog.csdn.net/zhangchuang601/article/details/79583551 #删除列 df_2 = df_1.drop(columns=['deptNo','routeNo']).copy() del df_2['trp_vehicleType'] #列名变更 df_3 = df_2.rename(columns={'dingdanNo':'订单号', 'createTime':'建单时间'})…
Ref: Pandas Tutorial: DataFrames in Python Ref: pandas.DataFrame Ref: Pandas:DataFrame对象的基础操作 Ref: Creating, reading, and writing reference pandas.DataFrame() pandas.Series() pandas.read_csv() pandas.DataFrame.shape pandas.DataFrame.head pandas.read_…
如果只是想把一个DataFrame保存为单独的一个Excel文件,那么直接写: data.to_excel('xxx.excel','sheet1',index=False) 但是这样做,只会保存为单个Excel文件和这个文件中的单个表. 如果先前存在有同名的Excel文件,这样做会把之前的Excel文件覆盖掉,不会起到在原文件中生成新的sheet的作用. 解决方法: if not os.path.exists(mon_excel_path): data_write.to_excel(mon_e…
定义: DataFrame是二维的.大小可变的.成分混合的.具有标签化坐标轴(行和列)的表数据结构.基于行和列标签进行计算.可以被看作是为序列对象(Series)提供的类似字典的一个容器,是pandas中主要的数据结构. 形式: class pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False) 参数含义: data : numpy ndarray(多维数组)(结构化或同质化的), dict(字典…
示例: 有如下表需要进行行转列: 代码如下: # -*- coding:utf-8 -*- import pandas as pd import MySQLdb from warnings import filterwarnings # 由于create table if not exists总会抛出warning,因此使用filterwarnings消除 filterwarnings('ignore', category = MySQLdb.Warning) from sqlalchemy i…
之前已经写过pandas DataFrame applymap()函数 还有pandas数组(pandas Series)-(5)apply方法自定义函数 pandas DataFrame 的 applymap() 函数和pandas Series 的 apply() 方法,都是对整个对象上个各个值进行单独处理,返回一个新的对象. 而pandas DataFrame 的  apply() 函数,虽然也是作用于DataFrame的每个值,但是接受的参数不是各个值本身,而是DataFrame里各行(…
上一篇pandas DataFrame apply()函数(1)说了如何通过apply函数对DataFrame进行转换,得到一个新的DataFrame. 这篇介绍DataFrame apply()函数的另一个用法,得到一个新的pandas Series: apply()中的函数接收的参数为一行(列),把一行(列)通过计算,返回一个值,最后返回一个Series: 下图展示了把DataFrame的各列转换成一个数,最后返回成一个Series: 举个栗子: import numpy as np imp…
把pandas dataframe转为list方法 先用numpy的 array() 转为ndarray类型,再用tolist()函数转为list…