EM算法之GMM聚类】的更多相关文章

以下为GMM聚类程序 import pandas as pd import matplotlib.pyplot as plt import numpy as np data=pd.read_csv('Fremont.csv',index_col='Date',parse_dates=True) print(data.head()) data.plot() plt.show() data.resample('w').sum().plot()#以周为时间统计 data.resample('D').s…
python大战机器学习——聚类和EM算法   注:本文中涉及到的公式一律省略(公式不好敲出来),若想了解公式的具体实现,请参考原著. 1.基本概念 (1)聚类的思想: 将数据集划分为若干个不想交的子集(称为一个簇cluster),每个簇潜在地对应于某一个概念.但是每个簇所具有现实意义由使用者自己决定,聚类算法仅仅会进行划分. (2)聚类的作用: 1)可以作为一个单独的过程,用于寻找数据的一个分布规律 2)作为分类的预处理过程.首先对分类数据进行聚类处理,然后在聚类结果的每一个簇上执行分类过程.…
高斯混合模型 混合模型,顾名思义就是几个概率分布密度混合在一起,而高斯混合模型是最常见的混合模型: GMM,全称 Gaussian Mixture Model,中文名高斯混合模型,也就是由多个高斯分布混合起来的模型: 概率密度函数为 K 表示高斯分布的个数,αk 表示每个高斯分布的系数,αk>0,并且 Σαk=1, Ø(y|θk) 表示每个高斯分布,θk 表示每个高斯分布的参数,θk=(uk,σk2): 举个例子 男人和女人的身高都服从各自的高斯分布,把男人女人混在一起,那他们的身高就服从高斯混…
目录 最大似然估计 K-means算法 EM算法 GMM算法(实际是高斯混合聚类) 中心思想:①极大似然估计 ②θ=f(θold) 此算法非常老,几乎不会问到,但思想很重要. EM的原理推导还是蛮复杂的,图片上没法子编辑公式,直接打字无法完美描述整个过程,所以我直接在纸上打出详细过程加以备注 有哪些看不清楚的下面评论区留言,每天我都在 概括 GMM算法…
一.GMM算法 EM算法实在是难以介绍清楚,因此我们用EM算法的一个特例GMM算法作为引入. 1.GMM算法问题描述 GMM模型称为混合高斯分布,顾名思义,它是由几组分别符合不同参数的高斯分布的数据混合而成的. 假设有n个样本点\(x_{1},x_{2},...,x_{n}\),它们来自K个不同的高斯分布.有如下参数: 1.不同高斯分布的数据占比:\(\pi_{i}\) 2.每个高斯分布的均值与方差:\(\pi_{i}~N(\mu_{i},\sigma_{i}^2)\) 我们的目的是求出每个\(…
公号:码农充电站pro 主页:https://codeshellme.github.io 之前介绍过K 均值算法,它是一种聚类算法.今天介绍EM 算法,它也是聚类算法,但比K 均值算法更加灵活强大. EM 的全称为 Expectation Maximization,中文为期望最大化算法,它是一个不断观察和调整的过程. 1,和面过程 我们先来看一下和面的过程. 通常情况下,如果你事先不知道面与水的比例,和面过程可能是下面这样: 先放入一些面和水. 将面团揉拌均匀. 观察面团的稀稠程度:如果面团比较…
机器学习算法-GMM和EM算法 目录 机器学习算法-GMM和EM算法 1. GMM模型 2. GMM模型参数求解 2.1 参数的求解 2.2 参数和的求解 3. GMM算法的实现 3.1 gmm类的定义和实现 3.2 测试 4. EM算法 1. GMM模型 ​ 聚类问题是一个经典的无监督任务,其目标是将 \(N\) 个 \(D\) 维数据 \(\{\bf{x}_i\}_{i=1}^N\) 分成\(K\)个簇,使得每个簇中的样本尽可能相似.GMM算法对数据分布做了一些假设: 第\(k\)个簇数据点…
1. 前言 我们之前有介绍过4. EM算法-高斯混合模型GMM详细代码实现,在那片博文里面把GMM说涉及到的过程,可能会遇到的问题,基本讲了.今天我们升级下,主要一起解析下EM算法中GMM(搞事混合模型)带惩罚项的详细代码实现. 2. 原理 由于我们的极大似然公式加上了惩罚项,所以整个推算的过程在几个地方需要修改下. 在带penality的GMM中,我们假设协方差是一个对角矩阵,这样的话,我们计算高斯密度函数的时候,只需要把样本各个维度与对应的\(\mu_k\)和\(\sigma_k\)计算一维…
用EM算法估计GMM模型参数 参考  西瓜书 再看下算法流程…
前言:本文主要介绍PLSA及EM算法,首先给出LSA(隐性语义分析)的早期方法SVD,然后引入基于概率的PLSA模型,其参数学习采用EM算法.接着我们分析如何运用EM算法估计一个简单的mixture unigram 语言模型和混合高斯模型GMM的参数,最后总结EM算法的一般形式及运用关键点.对于改进PLSA,引入hyperparameter的LDA模型及其Gibbs Sampling参数估计方法放在本系列后面的文章LDA及Gibbs Samping介绍. 1 LSA and SVD LSA(隐性…