论文提出了类似于dropout作用的diversification block,通过抑制特征图的高响应区域来反向提高模型的特征提取能力,在损失函数方面,提出专注于top-k类别的gradient-boosting loss来优化训练过程,模型在ResNet-50上提升3.2%,算法思路巧妙,结构易移植且效果也不错,值得学习 论文:Fine-grained Recognition: Accounting for Subtle Differences between Similar Classes…
论文提出细粒度分类解决方案CAP,通过上下文感知的注意力机制来帮助模型发现细微的特征变化.除了像素级别的注意力机制,还有区域级别的注意力机制以及局部特征编码方法,与以往的视觉方案很不同,值得一看 来源:晓飞的算法工程笔记 公众号 论文: Context-aware Attentional Pooling (CAP) for Fine-grained Visual Classification 论文地址:https://arxiv.org/abs/2101.06635 论文代码:https://g…
Infrared-Visible Cross-Modal Person Re-Identification with an X Modality (AAAI 2020) 1. Motivation 可见光图像包含颜色.外观等信息,波长较短:红外图像包含结构和轮廓信息,波长较长,两个模态差异大 当前存在的方法都有以下弊端:对参数敏感,难收敛,计算量大.如何减少两个模态间的差异成为了解决跨模态行人重识别的关键问题. 大部分方法都是将两个模态图像映射到同一个特征空间,如图 (a) 所示(颜色一样的为同一…
美国时间2月7-12日,AAAI 2020大会在纽约正式拉开序幕,AAAI作为全球人工智能领域的顶级学术会议,每年评审并收录来自全球最顶尖的学术论文,这些学术研究引领着技术的趋势和未来.京东云与AI在本次大会上有10篇论文被AAAI收录,涉及自然语言处理.计算机视觉.机器学习等领域, 充分展现了京东用技术驱动公司成长的发展模式以及技术实力,技术创新和应用落地也成为这些论文最吸引行业关注的亮点. 本届会议共收到的有效论文投稿超过8800篇,其中7737 篇论文进入评审环节,最终录取数量为1591篇…
2月初,AAAI 2020在美国纽约拉开了帷幕.本届大会百度共有28篇论文被收录.本文将对其中的机器翻译领域入选论文<Synchronous Speech Recognition and Speech-to-Text Translation with Interactive Decoding>进行解读. https://mmbiz.qpic.cn/mmbiz_png/uYIC4meJTZ2icYYOpJicZ7qn53NJFPhvruP97grEpmCwA5Sms2kHtrFBcDK0lRcs…
论文:Region Normalization for Image Inpainting, AAAI 2020 代码:https://github.com/geekyutao/RN 图像修复的目的是重建输入图像的损坏区域.它在图像编辑中有许多应用,例如面部编辑和图像遮挡.图像修复中的关键问题是在损坏的区域中生成视觉上合理的内容. 现有的图像修复方法可以分为两类:传统方法和基于学习的方法.传统方法通过基于扩散的方式来填充损坏的区域,这些方法会将邻近的信息传播到损坏区域.基于学习的方法通常训练神经网…
论文提出了结合注意力卷积的二叉神经树进行弱监督的细粒度分类,在树结构的边上结合了注意力卷积操作,在每个节点使用路由函数来定义从根节点到叶子节点的计算路径,结合所有叶子节点的预测值进行最终的预测,论文的创意和效果来看都十分不错   来源:晓飞的算法工程笔记 公众号 论文: Attention Convolutional Binary Neural Tree for Fine-Grained Visual Categorization 论文地址:https://arxiv.org/abs/1909.…
论文提出了IoU-based的DIoU loss和CIoU loss,以及建议使用DIoU-NMS替换经典的NMS方法,充分地利用IoU的特性进行优化.并且方法能够简单地迁移到现有的算法中带来性能的提升,实验在YOLOv3上提升了5.91mAP,值得学习 论文:Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression 论文地址:https://arxiv.org/abs/1911.08287 代码地址:ht…
论文提出Spiking-YOLO,是脉冲神经网络在目标检测领域的首次成功尝试,实现了与卷积神经网络相当的性能,而能源消耗极低.论文内容新颖,比较前沿,推荐给大家阅读   来源:晓飞的算法工程笔记 公众号 论文: Spiking-YOLO: Spiking Neural Network for Energy-Efficient Object Detection 论文地址:https://arxiv.org/abs/1903.06530 Introduction   脉冲神经网络(Spiking n…
一.官方下载 Kali Linux 官方网址:www.Kali.org下载方式分两种:http 下载和 bt 下载(由于是国外网站 http 方式下载会非常慢),选择对应版本点击即可下载. 二.创建新的虚拟  1.新建虚拟机(使用自定义方式),点击”下一步“,然后选择自己所安装的虚拟机版本,再点击”下一步“: 2.选择”稍后安装操作系统“,点击”下一步“,选择虚拟机可支持的Linux版本,这里使用Debian 8.x,然后点击”下一步“: 3.输入虚拟机名称并选择安装位置,点击”下一步“,然后选…
Part4文本分类 Part3文本聚类提到过.与聚类分类的简单差异. 那么,我们需要理清训练集的分类,有明白分类的文本:測试集,能够就用训练集来替代.预測集,就是未分类的文本.是分类方法最后的应用实现. 1.       数据准备 训练集准备是一个非常繁琐的功能,临时没发现什么省力的办法,依据文本内容去手动整理.这里还是使用的某品牌的官微数据,依据微博内容.我将它微博的主要内容分为了:促销资讯(promotion).产品推介(product).公益信息(publicWelfare).生活鸡汤(l…
今年毕业时的毕设是有关大数据及机器学习的题目.因为那个时间已经步入前端的行业自然选择使用JavaScript来实现其中具体的算法.虽然JavaScript不是做大数据处理的最佳语言,相比还没有优势,但是这提升了自己对与js的理解以及弥补了一点点关于数据结构的弱点.对机器学习感兴趣的朋友还是去用 python,最终还是在学校的死板论文格式要求之外,记录一下实现的过程和我自己对于算法的理解.源码在github:https://github.com/abzerolee/ID3_Bayes_JS开始学习…
前言   在学计算机视觉的这段时间里整理了不少的笔记,想着就把这些笔记再重新整理出来,然后写成Blog和大家一起分享.目前的计划如下(以下网络全部使用Pytorch搭建): 专题一:计算机视觉基础 介绍CNN网络(计算机视觉的基础) 浅谈VGG网络,介绍ResNet网络(网络特点是越来越深) 介绍GoogLeNet网络(网络特点是越来越宽) 介绍DenseNet网络(一个看似十分NB但是却实际上用得不多的网络) 整理期间还会分享一些自己正在参加的比赛的Baseline 专题二:GAN网络 搭建普…
https://zhuanlan.zhihu.com/p/28871960 深度学习模型中的卷积神经网络(Convolution Neural Network, CNN)近年来在图像领域取得了惊人的成绩,CNN直接利用图像像素信息作为输入,最大程度上保留了输入图像的所有信息,通过卷积操作进行特征的提取和高层抽象,模型输出直接是图像识别的结果.这种基于”输入-输出”直接端到端的学习方法取得了非常好的效果,得到了广泛的应用. 卷积层(convolution layer): 执行卷积操作提取底层到高层…
人工神经网络(ANN),简称神经网络,是一种模仿生物神经网络的结构和功能的数学模型或计算模型.神经网络由大量的人工神经元联结进行计算.大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统.现代神经网络是一种非线性统计性数据建模工具,常用来对输入和输出间复杂的关系进行建模,或用来探索数据的模式. 人工神经网络从以下四个方面去模拟人的智能行为: 物理结构:人工神经元将模拟生物神经元的功能 计算模拟:人脑的神经元有局部计算和存储的功能,通过连接构成一个系统.人工神经网络中也有大量…
绘制了一张导图,有不对的地方欢迎指正: 下载地址 机器学习中,特征是很关键的.其中包括,特征的提取和特征的选择.他们是降维的两种方法,但又有所不同: 特征抽取(Feature Extraction):Creatting a subset of new features by combinations of the exsiting features.也就是说,特征抽取后的新特征是原来特征的一个映射. 特征选择(Feature Selection):choosing a subset of all…
最近因病休养在家,另外也算是正式的离开Snack Studio.终于有了大把可以自由支配的时间.可以自主的安排.最近闲暇的时间总算是恶补了不少前段时间行业没有时间关注的新事物.看着行业里引领潮流的东西,除非为数不多的天才能够创造得出,估计大多数人跟我一样,看着这些目不接暇的潮流总是觉得多少有些不知所措.但这并不妨碍从一个学习者的角度来了解这些新东西.类似本篇即将要谈到的R语言. 当一旦涉及一个新的领域.或一门新的语言.总是很容易陷入一些具体细节中而无法从更高的角度看到一门语言形成的背后的行业的背…
现在对R感兴趣的人越来越多,很多人都想快速的掌握R语言,然而,由于目前大部分高校都没有开设R语言课程,这就导致很多人不知道如何着手学习R语言. 对于初学R语言的人,最常见的方式是:遇到不会的地方,就跑到论坛上吼一嗓子,然后欣然or悲伤的离去,一直到遇到下一个问题再回来.当然,这不是最好的学习方式,最好的方式是——看书.目前,市面上介绍R语言的书籍很多,中文英文都有.那么,众多书籍中,一个生手应该从哪一本着手呢?入门之后如何才能把自己练就成某个方面的高手呢?相信这是很多人心中的疑问.有这种疑问的人…
版权声明:本文为博主原创文章,转载请注明出处   机器学习的研究领域是发明计算机算法,把数据转变为智能行为.机器学习和数据挖掘的区别可能是机器学习侧重于执行一个已知的任务,而数据发掘是在大数据中寻找有价值的东西. 机器学习一般步骤 收集数据,将数据转化为适合分析的电子数据 探索和准备数据,机器学习中许多时间花费在数据探索中,它要学习更多的数据信息,识别它们的微小差异 基于数据训练模型,根据你要学习什么的设想,选择你要使用的一种或多种算法 评价模型的性能,需要依据一定的检验标准 改进模型的性能,有…
[怪毛匠子整理] 1.下载 wget http://mirror.bjtu.edu.cn/cran/src/base/R-3/R-3.0.1.tar.gz 2.解压: tar -zxvf R-3.0.1.tar.gz cd R-3.0.1 3.安装 yum install readline-devel yum install libXt-devel ./configure 如果使用rJava需要加上 --enable-R-shlib ./configure  --enable-R-shlib -…
LBP的全称是Local Binary Pattern即局部二值模式,是局部信息提取中的一种方法,它具有旋转不变性和灰度不变性等显著的优点.在人脸识别领域有很多案例,此外,局部特征的算法还有 SIFT HOG等等. LBP就是一种局部信息,它反应的内容是每个像素与周围像素的关系.举最基本的LBP为例,它反应了像素与周围8个点灰度值的关系,如下图所示: 如上图所示,中间像素的灰度值为54,我们如下定义:当周围像素的灰度值大于等于中间像素值时,则LBP的一位值为1,否则为零.由这个九宫格,我们就得到…
看过很多介绍HOG的博文,讲的最清楚的是这位博主:http://blog.csdn.net/zouxy09/article/details/7929348 代码如下: #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/gpu/gpu.hpp> #include <stdio.h> using namespace cv; int m…
转自http://blog.csdn.net/han_xiaoyang/article/details/51191386 – 谷歌的无人车和机器人得到了很多关注,但我们真正的未来却在于能够使电脑变得更聪明,更人性化的技术,机器学习. – 埃里克 施密特(谷歌首席执行官) 当计算从大型计算机转移至个人电脑再转移到云的今天,我们可能正处于人类历史上最关键的时期.之所以关键,并不是因为已经取得的成就,而是未来几年里我们即将要获得的进步和成就. 对我来说,如今最令我激动的就是计算技术和工具的普及,从而带…
R的优点:免费,开源,体积小.缺点:对大文本处理差,另外一个也在于开源,package如果出错,烦死你.当你跑比较大的simulation,对效率有要求的时候,有时还是不得不用C,这可能是10小时和10分钟的差别,毫不夸张.SAS流行于公司,R流行于研究机构和大学数据分析不是单纯的靠软件来做的,需要很好的数学基础. 统计学工具各有千秋.https://englianhu.wordpress.com/statistics/学了R,可以免去学spss,matalab,ucinet等等众多的软件,可以…
时间序列与数据挖掘 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到: 1. LX终端(LXTerminal): Linux命令行终端,打开后会进入Bash环境,可以使用Linux命令2. GVim:非常好用的编辑器,最简单的用法可以参考课程Vim编辑器3. R:在命令行输入‘R’进入交互式环境,下面的代码都是在交互式环境运行4. 数据:在命令行终端输入以下命令:…
之前数篇博客我们比较了几种具有代表性的聚类算法,但现实工作中,最多的问题是分类与定性预测,即通过基于已标注类型的数据的各显著特征值,通过大量样本训练出的模型,来对新出现的样本进行分类,这也是机器学习中最多的问题,而本文便要介绍分类算法中比较古老的线性判别分析: 线性判别 最早提出合理的判别分析法者是R.A.Fisher(1936),Fisher提出将线性判别函数用于花卉分类上,将花卉的各种特征利用线性组合方法变成单变量值,即将高维数据利用线性判别函数进行线性变化投影到一条直线上,再利用单值比较方…
相关: KD树+BBF算法解析 SURF原理与源代码解析 SIFT的原理已经有非常多大牛的博客上做了解析,本文重点将以Rob Hess等人用C实现的代码做解析,结合代码SIFT原理会更easy理解.一些难理解点的用了☆标注. 欢迎大家批评指正. 转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/47377611 SIFT(Scale-invariant feature transform)即尺度不变特征转换,提取的局部特征点具有…
本文主要介绍下opencv中怎样使用hog算法,因为在opencv中已经集成了hog这个类.其实使用起来是很简单的,从后面的代码就可以看出来.本文参考的资料为opencv自带的sample. 关于opencv中hog的源码分析,可以参考本人的另一篇博客:opencv源码解析之(6):hog源码分析 开发环境:opencv2.4.2+Qt4.8.2+ubuntu12.04+QtCreator2.5. 实验功能: 单击Open Image按钮,选择需要进行人检测的一张图片,确定后自动显示出来.该图片…
2020年AI.CV.NLP顶会最全时间表 2019-09-01 14:04:19 weixin_38753768 阅读数 40   2020 AI.CV.NLP主流会议时间表,包含会议举办的时间.地点.投稿截止日期.官方网址/社交媒体地址,还有H指数(谷歌学术的期刊会议评判标准,即过去5年内有至多h篇论文被引用了至少h次). 2月 AAAI 2020 会议名称: Association for the Advancement of Artificial Intelligence 会议地点: N…
<转>机器学习系列(9)_机器学习算法一览(附Python和R代码)   转自http://blog.csdn.net/han_xiaoyang/article/details/51191386 – 谷歌的无人车和机器人得到了很多关注,但我们真正的未来却在于能够使电脑变得更聪明,更人性化的技术,机器学习. – 埃里克 施密特(谷歌首席执行官) 当计算从大型计算机转移至个人电脑再转移到云的今天,我们可能正处于人类历史上最关键的时期.之所以关键,并不是因为已经取得的成就,而是未来几年里我们即将要获…