torch.nn.Conv2d()使用】的更多相关文章

API 输入:[ batch_size, channels, height_1, width_1 ] Conv2d输入参数:[ channels, output, height_2, width_2 ] 输出:[ batch_size,output, height_3, width_3 ] 实例: def torch_practice(): x = torch.randn(2,1,16,4) conv = torch.nn.Conv2d(1, 32, (2,2)) res = conv(x) p…
先看一下CLASS有哪些参数: torch.nn.Conv2d( in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros' ) 可以对输入的张量进行 2D 卷积. in_channels: 输入图片的 channel 数. out_channels: 输出图片的 channel 数. kernel_size: 卷积核的大小.…
torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom Variable的一种,常被用于模块参数(module parameter). Parameters 是 Variable 的子类.Paramenters和Modules一起使用的时候会有一些特殊的属性,即:当Paramenters赋值给Module的属性的时候,他会自动的被加到 Module的 参…
https://pytorch.org/docs/stable/nn.html 1)卷积层 class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 二维卷积层, 输入的尺度是(N, Cin,H,W),输出尺度(N,Cout,Hout,Wout)的计算方式: 说明 stride: 控制相关系数的计算步长 dilation:…
PyTorch : torch.nn.xxx 和 torch.nn.functional.xxx 在写 PyTorch 代码时,我们会发现一些功能重复的操作,比如卷积.激活.池化等操作.这些操作分别可以通过 torch.nn.xxx 和 torch.nn.functional.xxx 来实现. 首先可以观察源码: eg:torch.nn.Conv2d CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, p…
Torch.nn.Conv2d(in_channels,out_channels,kernel_size,stride=1,padding=0,dilation=1,groups=1,bias=True) in_channels:输入维度 out_channels:输出维度 kernel_size:卷积核大小 stride:步长大小 padding:补0 dilation:kernel间距…
Pytorch中nn.Conv2d的用法 nn.Conv2d是二维卷积方法,相对应的还有一维卷积方法nn.Conv1d,常用于文本数据的处理,而nn.Conv2d一般用于二维图像. 先看一下接口定义: class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 参数解释: stride:步长 zero-padding:图像四周…
1. torch.nn与torch.nn.functional之间的区别和联系 https://blog.csdn.net/GZHermit/article/details/78730856 nn和nn.functional之间的差别如下,我们以conv2d的定义为例 torch.nn.Conv2d import torch.nn.functional as F class Conv2d(_ConvNd): def __init__(self, in_channels, out_channels…
在写代码时发现我们在定义Model时,有两种定义方法: torch.nn.Conv2d()和torch.nn.functional.conv2d() 那么这两种方法到底有什么区别呢,我们通过下述代码看出差别,先拿torch.nn.Conv2d torch.nn.Conv2d class Conv2d(_ConvNd): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=…
主要是参考这里,写的很好PyTorch 入门实战(四)--利用Torch.nn构建卷积神经网络 卷积层nn.Con2d() 常用参数 in_channels:输入通道数 out_channels:输出通道数 kernel_size:滤波器(卷积核)大小,宽和高相等的卷积核可以用一个数字表示,例如kernel_size=3;否则用不同数字表示,例如kernel_size=(5,3) stride : 表示滤波器滑动的步长 padding:是否进行零填充,padding=0表示四周不进行零填充,pa…