At some fundamental level, no one understands machine learning. It isn’t a matter of things being too complicated. Almost everything we do is fundamentally very simple. Unfortunately, an innate human handicap interferes with us understanding these si…
2013 基于数据降维和压缩感知的图像哈希理论与方法 唐振军 广西师范大学 多元时间序列数据挖掘中的特征表示和相似性度量方法研究 李海林 华侨大学       基于标签和多特征融合的图像语义空间学习技术研究 管子玉 西北大学       非负矩阵分解中维数约减问题研究 赵金熙 南京大学 58     大数据环境下高维数据流挖掘算法及应用研究 冯林 大连理工大学       面向高维信息的非线性维数约减问题研究 高小方 山西大学       基于支持向量机的增量式强化学习技术及其应用研究 伏玉琛…
MNIST 可视化 Visualizing MNIST: An Exploration of Dimensionality Reduction At some fundamental level, no one understands machine learning. It isn't a matter of things being too complicated. Almost everything we do is fundamentally very simple. Unfortuna…
import keras import matplotlib.pyplot as plt from keras.datasets import mnist (x_train, _), (x_test, y_test) = mnist.load_data() x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 x_train = x_train.reshape(x_train.shape…
机器学习问题可能包含成百上千的特征.特征数量过多,不仅使得训练很耗时,而且难以找到解决方案.这一问题被称为维数灾难(curse of dimensionality).为简化问题,加速训练,就需要降维了. 降维会丢失一些信息(比如将图片压缩成jpeg格式会降低质量),所以尽管会提速,但可能使模型稍微变差.因此首先要使用原始数据进行训练.如果速度实在太慢,再考虑降维. 8.1 维数灾难(The Curse of Dimensionality) 我们生活在三维空间,连四维空间都无法直观理解,更别说更高…
10. Dimensionality Reduction Content  10. Dimensionality Reduction 10.1 Motivation 10.1.1 Motivation one: Data Compression 10.2.2 Motivation two: Visualization 10.2 Principal Component Analysis 10.2.1 Problem formulation 10.2.2 Principal Component An…
个人的一些碎碎念: 聚类,直觉就能想到kmeans聚类,另外还有一个hierarchical clustering,但是单细胞里面都用得不多,为什么?印象中只有一个scoring model是用kmean进行粗聚类.(10x就是先做PCA,再用kmeans聚类的) 鉴于单细胞的教程很多,也有不下于10种针对单细胞的聚类方法了. 降维往往是和聚类在一起的,所以似乎有点难以区分. PCA到底是降维.聚类还是可视化的方法,t-SNE呢? 其实稍微思考一下,PCA.t-SNE还有下面的diffusion…
Lecture 14 Dimensionality Reduction 降维 14.1 降维的动机一:数据压缩 Data Compression 现在讨论第二种无监督学习问题:降维. 降维的一个作用是数据压缩,允许我们使用较少的内存或磁盘空间,也加快算法速度. 举例: 假设用两个特征描述同一个物品的长度,x1单位是厘米cm,x2单位是英寸inches.这将导致高度冗余,所以需要减到一维. 将数据从三维降至二维: 将三维向量投射到一个二维的平面上,强迫使得所有的数据都在同一个平面上,降至二维的特征…
数据降维(Dimensionality reduction) 应用范围 无监督学习 图片压缩(需要的时候在还原回来) 数据压缩 数据可视化 数据压缩(Data Compression) 将高维的数据转变为低维的数据, 这样我们存储数据的矩阵的列就减少了, 那么我们需要存储的数据就减少了 数据可视化 数据可视化是非常重要的, 通过可视化数据可以发现数据的规律, 但是大多数时候我们到的数据是高维度的, 可视化很困难, 采用数据降维可以将数据降到二维进行数据可视化 加快机器学习算法的速度 维度少了程序…
监督学习算法需要标记的样本(x,y),但是无监督学习算法只需要input(x). 您将了解聚类 - 用于市场分割,文本摘要,以及许多其他应用程序. Principal Components Analysis, 经常用于加快学习算法,同时对于数据可视化以帮助你对数据的理解也有很大的帮助. Unsupervised learning Introduction supervised learning:在前面几课我们学习的都是属于监督性学习的内容,包括回归和分类,主要特点就是我们使用的数据集都是类似(x…
降维(Dimensionality Reduction) 动机一:数据压缩(Motivation I : Data Compression) 数据压缩允许我们压缩数据,从而使用较少的计算机内存或磁盘空间,还会加快算法的学习速度. 下面举例说明下降维是什么? 在工业上,往往有成百上千个特征.比如,可能有几个不同的工程团队,一个团队给了你二百个特征,第二个团队给了你另外三百个的特征,第三团队给了你五百个特征,一千多个特征都在一起,那么实际上,如果你想去追踪一下你所知道的那些特征会变得相当困难,而你又…
降维(Dimensionality Reduction) 降维的目的:1 数据压缩 这个是二维降一维 三维降二维就是落在一个平面上. 2 数据可视化 降维的算法只负责减少维数,新产生的特征的意义就必须由我们自 己去发现了. 主成分分析(PCA)是最常见的降维算法. 在 PCA 中,我们要做的是找到一个方向向量(Vector direction),当我们把所有的数据 都投射到该向量上时,我们希望投射平均均方误差能尽可能地小. 主成分分析与线性回归是两种不同的算法.主成分分析最小化的是投射误差(Pr…
http://blog.csdn.net/pipisorry/article/details/49231919 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记 推荐系统Recommendation System之降维Dimensionality Reduction {博客内容:推荐系统有一种推荐称作隐语义模型(LFM, latent factor model)推荐,这种推荐将在下一篇博客中讲到.这篇博客主要讲隐语义模型…
如果我们能更好地理解我们的数据,这样会对我们开发高效的机器学习算法有作用,将数据可视化(将数据画出来能更好地理解数据)出来将会对我们理解我们的数据起到很大的帮助. 高维数据如何进行显示 GDP: gross domestic product 假设我们可能有50个features,那么我们怎么查看我们的数据呢(如怎么查看代表一个国家如canada的数据,二维可以通过一个点来表示)?因为要画出50维的数据是很难的,这里会用到dimensionality reduction 将50维的数据约简为2维数…
1. 动机一:数据压缩 第二种类型的 无监督学习问题,称为 降维.有几个不同的的原因使你可能想要做降维.一是数据压缩,数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,但它也让我们加快我们的学习算法. 但首先,让我们谈论 降维是什么.作为一种生动的例子,我们收集的数据集,有许多,许多特征,我绘制两个在这里. 将数据从二维降一维: 将数据从三维降至二维: 这个例子中我们要将一个三维的特征向量降至一个二维的特征向量.过程是与上面类似的,我们将三维向量投射到一个二维的平面上,强迫使得所…
14.1  动机一:数据压缩 14.2  动机二:数据可视化 14.3  主成分分析问题 14.4  主成分分析算法 14.5  选择主成分的数量 14.6  重建的压缩表示 14.7  主成分分析法的应用建议 14.1  动机一:数据压缩…
目标一:数据压缩 除了聚类,还有第二种类型的无监督学习问题称为降维.有几个不同的的原因使你可能想要做降维.一是数据压缩,数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,而且它也让我们加快我们的学习算法. 我们收集的数据集,有许多,许多特征,我绘制两个在这里. 假设我们未知两个的特征:…
14.1  动机一:数据压缩 14.2  动机二:数据可视化 14.3  主成分分析问题 14.4  主成分分析算法 14.5  选择主成分的数量 14.6  重建的压缩表示 14.7  主成分分析法的应用建议 14.1  动机一:数据压缩 14.2  动机二:数据可视化 14.3  主成分分析问题 14.4  主成分分析算法 14.5  选择主成分的数量 14.6  重建的压缩表示 14.7  主成分分析法的应用建议…
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站点:www.skyseraph.com Overview 本文系“SkySeraph AI 实践到理论系列”第一篇,咱以AI界的HelloWord 经典MNIST数据集为基础,在Android平台,基于TensorFlow,实现CNN的手写数字识别.Code~ Practice Environmen…
Code_link:https://pan.baidu.com/s/1dshQt57196fhh67F8nqWow 本文是为既没有机器学习基础也没了解过TensorFlow的码农.序媛们准备的.如果已经了解什么是MNIST和softmax回归本文也可以再次帮助你提升理解.在阅读之前,请先确保在合适的环境中安装了TensorFlow(windows安装请点这里,其他版本请官网找),适当编写文章中提到的例子能提升理解. 首先我们需要了解什么是“MNIST”? 每当我们学习一门新的语言时,所有的入门教…
流形学习(Manifold Learning)是机器学习中一大类算法的统称,流形学习是非线性的降维方法(an approach to non-linear dimensionality reduction).PCA.LDA等降维方法基于线性假设,经常会损失数据内部非线性的结构信息:流形学习是线性降维方法的generalization,目的是捕获数据内部非线性的结构.而MDS就是流行学习中非常经典的一种方法. 多维尺度变换是一种在低维空间展示“距离”数据结构的多元数据分析技术,是一种将多维空间的研…
变分自编码器(VAE,variatinal autoencoder)   VS    生成式对抗网络(GAN,generative adversarial network) 两者不仅适用于图像,还可以探索声音.音乐甚至文本的潜在空间: VAE非常适合用于学习具有良好结构的潜在空间,其中特定方向表示数据中有意义的变化轴;  GAN生成的图像可能非常逼真,但它的潜在空间可能没有良好结构,也没有足够的连续型.   自编码,简单来说就是把输入数据进行一个压缩和解压缩的过程. 原来有很多 Feature,…
自编码器可以用于降维,添加噪音学习也可以获得去噪的效果. 以下使用单隐层训练mnist数据集,并且共享了对称的权重参数. 模型本身不难,调试的过程中有几个需要注意的地方: 模型对权重参数初始值敏感,所以这里对权重参数w做了一些限制 需要对数据标准化 学习率设置合理(Adam,0.001) 1,建立模型 import numpy as np import tensorflow as tf class AutoEncoder(object): ''' 使用对称结构,解码器重用编码器的权重参数 '''…
MNIST机器学习入门 转自:http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html?plg_nld=1&plg_uin=1&plg_auth=1&plg_nld=1&plg_usr=1&plg_vkey=1&plg_dev=1 这个教程的目标读者是对机器学习和TensorFlow都不太了解的新手.如果你已经了解MNIST和softmax回归(softm…
MNIST 卷积神经网络.https://github.com/nlintz/TensorFlow-Tutorials/blob/master/05_convolutional_net.py .TensorFlow搭建卷积神经网络(CNN)模型,训练MNIST数据集. 构建模型. 定义输入数据,预处理数据.读取数据MNIST,得到训练集图片.标记矩阵,测试集图片标记矩阵.trX.trY.teX.teY 数据矩阵表现.trX.teX形状变为[-1,28,28,1],-1 不考虑输入图片数量,28x…
转自:https://blog.csdn.net/simple_the_best/article/details/75267863 MNIST 数据集已经是一个被”嚼烂”了的数据集, 很多教程都会对它”下手”, 几乎成为一个 “典范”. 不过有些人可能对它还不是很了解, 下面来介绍一下. MNIST 数据集可在 http://yann.lecun.com/exdb/mnist/ 获取, 它包含了四个部分: Training set images: train-images-idx3-ubyte.…
介绍如何使用keras搭建一个多层感知机实现手写体识别及搭建一个神经网络最小的必备知识 import keras # 导入keras dir(keras) # 查看keras常用的模块 ['Input', 'Model', 'Sequential', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '__ver…
装载自:http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html TensorFlow训练MNIST 这个教程的目标读者是对机器学习和TensorFlow都不太了解的新手.如果你已经了解MNIST和softmax回归(softmax regression)的相关知识,你可以阅读这个快速上手教程. 当我们开始学习编程的时候,第一件事往往是学习打印"Hello World".就好比编程入门有Hello World,机器学习入门…
MNIST机器学习入门 这个教程的目标读者是对机器学习和TensorFlow都不太了解的新手.如果你已经了解MNIST和softmax回归(softmax regression)的相关知识,你可以阅读这个快速上手教程. 当我们开始学习编程的时候,第一件事往往是学习打印"Hello World".就好比编程入门有Hello World,机器学习入门有MNIST. MNIST是一个入门级的计算机视觉数据集,它包含各种手写数字图片: 它也包含每一张图片对应的标签,告诉我们这个是数字几.比如,…
Mac tensorflow mnist实例 前期主要需要安装好tensorflow的环境,Mac 如果只涉及到CPU的版本,推荐使用pip3,傻瓜式安装,一行命令!代码使用python3. 在此附上个人git完整代码地址:https://github.com/Liuyubao/Tensorflow_mnist sudo pip3 install tensorflow 开堂测试 下面是一些会涉及到的概念,可以参考谷歌机器学习术语表. 训练集 测试集 特征 损失函数 激活函数 准确率 偏差 梯度下…