Spark机器学习基础-无监督学习】的更多相关文章

0.K-means from __future__ import print_function from pyspark.ml.clustering import KMeans#硬聚类 #from pyspark.ml.evaluation import ClusteringEvaluator#2.2版本支持评估,2.1版本不支持 from pyspark.sql import SparkSession ! head -5 data/mllib/sample_kmeans_data.txt#展示…
前言 在上篇<Python 机器学习实战 -- 监督学习>介绍了 支持向量机.k近邻.朴素贝叶斯分类 .决策树.决策树集成等多种模型,这篇文章将为大家介绍一下无监督学习的使用.无监督学习顾名思义数据中不包含已知的输出结果,学习算法中只有输入数据,算法需要从这些输入数据中提取相关规律.无监督学习主要分为两种类型:数据集变换与聚类算法,数据集的无监督变换是创建数据集的新的表达方式,使其特性更容易理解,最常见的模型有 PCA.NMF.t-SNE 等模型.聚类算法则是将数据划分成不同的组,每组数据中包…
前言 在上篇< Python 机器学习实战 -- 无监督学习(上)>介绍了数据集变换中最常见的 PCA 主成分分析.NMF 非负矩阵分解等无监督模型,举例说明使用使用非监督模型对多维度特征数据集进行降维的意义及实用方法.对 MDS 多维标度法.LLE 局部线性嵌入法.Isomap 保距映射法.t-SNE 分布邻域嵌入算法等 ML 流形学习模型的基础使用方法进行讲解.本文将对聚类算法进行讲解,聚类算法就是将数据集划分成组的任务,这些组叫成簇,同一个簇内的数据点特征非常相似,不同簇内的数据点特征区…
spark的机器学习库,包含常见的学习算法和工具如分类.回归.聚类.协同过滤.降维等使用算法时都需要指定相应的数据集,下面为大家介绍常用的spark ml 数据类型.1.本地向量(Local Vector)存储在单台机器上,索引采用0开始的整型表示,值采用Double类型的值表示.Spark MLlib中支持两种类型的矩阵,分别是密度向量(Dense Vector)和稀疏向量(Spasre Vector),密度向量会存储所有的值包括零值,而稀疏向量存储的是索引位置及值,不存储零值,在数据量比较大…
无监督学习 0.K-means from __future__ import print_function from pyspark.ml.clustering import KMeans #from pyspark.ml.evaluation import ClusteringEvaluator from pyspark.sql import SparkSession import pandas as pd spark = SparkSession\ .builder\ .appName("K…
监督学习 0.线性回归(加L1.L2正则化) from __future__ import print_function from pyspark.ml.regression import LinearRegression from pyspark.sql import SparkSession spark = SparkSession\ .builder\ .appName("LinearRegressionWithElasticNet")\ .getOrCreate() # 加载数…
监督学习 0.线性回归(加L1.L2正则化) from __future__ import print_function from pyspark.ml.regression import LinearRegression from pyspark.sql import SparkSession spark = SparkSession\ .builder\ .appName("LinearRegressionWithElasticNet")\ .getOrCreate() # 加载数…
众所周知,机器学习的训练数据之所以非常昂贵,是因为需要大量人工标注数据. autoencoder可以输入数据和输出数据维度相同,这样测试数据匹配时和训练数据的输出端直接匹配,从而实现无监督训练的效果.并且,autoencoder可以起到降维作用,虽然输入输出端维度相同,但中间层可以维度很小,从而起到降维作用,形成数据的一个浓缩表示. 可以用autoencoder做Pretraining,对难以训练的深度模型先把网络结构确定,之后再用训练数据去微调. 特定类型的autoencoder可以做生成模型…
特征工程 对连续值处理 0.binarizer/二值化 from __future__ import print_function from pyspark.sql import SparkSession from pyspark.ml.feature import Binarizer spark = SparkSession\ .builder\ .appName("BinarizerExample")\ .getOrCreate() # 创建DataFrame continuous…
对连续值处理 0.binarizer/二值化 from __future__ import print_function from pyspark.sql import SparkSession from pyspark.ml.feature import Binarizer#ml相对于mllib更全一点,更新一点 spark = SparkSession\ .builder\ .appName("BinarizerExample")\ .getOrCreate() continuou…