在计算机视觉和模式识别中,点集配准技术是查找将两个点集对齐的空间变换过程.寻找这种变换的目的主要包括:1.将多个数据集合并为一个全局统一的模型:2.将未知的数据集映射到已知的数据集上以识别其特征或估计其姿态.点集的获取可以是来自于3D扫描仪或测距仪的原始数据,在图像处理和图像配准中,点集也可以是通过从图像中提取获得的一组特征(例如角点检测). 点集配准研究的问题可以概括如下:假设{M,S}是空间Rd中的两个点集,我们要寻找一种变换T,或者说是一种从Rd 空间到Rd 空间的映射,将其作用于点集M后…
上一篇博客中我们使用了四元数法计算ICP. 本篇我们使用SVD计算ICP. 下面是<视觉slam十四讲>中的计算方法: 计算步骤如下: 我们看到,只要求出了两组点之间的旋转,平移是非常容易得到的,所以我们重点关注R的计算.展开关于R的误差项,得: 注意到第一项和R无关,第二项由于R'R=I,亦与R无关.因此,实际上优化目标函数变为: 接下来,我们介绍怎样通过SVD解出上述问题中最优的R,但关于最优性的证明较为复杂,感兴趣的读者请参考[50,51],为了解R,先定义矩阵: W是一个3*3的矩阵,…
这个算是ICP算法中的一个关键步骤,单独拿出来看一下. 算法流程如下: 1.首先得到同名点集P和X. 2.计算P和X的均值up和ux. 3.由P和X构造协方差矩阵sigma. 4.由协方差矩阵sigma构造4*4对称矩阵Q. 5.计算Q的特征值与特征向量.其中Q最大特征值对应的特征向量即为最佳旋转向量q. 6.通过四元数q得到旋转矩阵R. 7.根据R计算最佳平移向量qr. 具体公式我就不贴图了,可以参考这篇“ICP算法在点云配准中的应用”论文的3.1节. 处理效果如下: 原始点集: 其中蓝点为原…
ICP算法简介 根据点云数据所包含的空间信息,可以直接利用点云数据进行配准.主流算法为最近迭代算法(ICP,Iterative Closest Point),该算法是根据点云数据首先构造局部几何特征,然后再根据局部几何特征进行点云数据重定位. 一. ICP原理 假设两个点云数据集合P和G,要通过P转换到G(假设两组点云存在局部几何特征相似的部分),可以通过P叉乘四元矩阵进行旋转平移变换到G,或者SVD法将P转换到G位置,总体思想都是需要一个4x4的旋转平移矩阵.对于每次旋转平移变换后计算P的所有…
ACM算法分类:http://www.kuqin.com/algorithm/20080229/4071.html 一: 拟合一个平面:使用SVD分解,代码里面去找吧 空间平面方程的一般表达式为: Ax+By+Cz+D=0; 则有: 平面法向量为n=(A,B,C). 第一种方法: 对于空间中n个点(n3) 空间中的离散点得到拟合平面,其实这就是一个最优化的过程.即求这些点到某个平面距离最小和的问题.由此,我们知道一个先验消息,那就是该平面一定会过众散点的平均值.接着我们需要做的工作就是求这个平面…
图像配准是图像处理研究领域中的一个典型问题和技术难点,其目的在于比较或融合针对同一对象在不同条件下获取的图像,例如图像会来自不同的采集设备,取自不同的时间,不同的拍摄视角等等,有时也需要用到针对不同对象的图像配准问题.具体地说,对于一组图像数据集中的两幅图像,通过寻找一种空间变换把一幅图像映射到另一幅图像,使得两图中对应于空间同一位置的点一一对应起来,从而达到信息融合的目的. 一个经典的应用是场景的重建,比如说一张茶几上摆了很多杯具,用深度摄像机进行场景的扫描,通常不可能通过一次采集就将场景中的…
在逆向工程,计算机视觉,文物数字化等领域中,由于点云的不完整,旋转错位,平移错位等,使得要得到的完整的点云就需要对局部点云进行配准,为了得到被测物体的完整数据模型,需要确定一个合适的坐标系,将从各个视角得到的点集合并到统一的坐标系下形成一个完整的点云,然后就可以方便进行可视化的操作,这就是点云数据的配准.点云的配准有手动配准依赖仪器的配准,和自动配准,点云的自动配准技术是通过一定的算法或者统计学规律利用计算机计算两块点云之间错位,从而达到两块点云自动配准的效果,其实质就是把不同的坐标系中测得到的…
ICP(Iterative Closest Point迭代最近点)算法是一种点集对点集配准方法.在VTK.PCL.MRPT.MeshLab等C++库或软件中都有实现,可以参见维基百科中的ICP Algorithm Implementations. ICP算法采用最小二乘估计计算变换矩阵,原理简单且具有较好的精度,但是由于采用了迭代计算,导致算法计算速度较慢,而且采用ICP进行配准计算时,其对待配准点云的初始位置有一定要求,若所选初始位置不合理,则会导致算法陷入局部最优.PCL点云库已经实现了多种…
临时研究了下机器视觉两个基本算法的算法原理 ,可能有理解错误的地方,希望发现了告诉我一下 主要是了解思想,就不写具体的计算公式之类的了 (一) ICP算法(Iterative Closest Point迭代最近点) ICP(Iterative Closest Point迭代最近点)算法是一种点集对点集配准方法,如下图1 如下图,假设PR(红色块)和RB(蓝色块)是两个点集,该算法就是计算怎么把PB平移旋转,使PB和PR尽量重叠,建立模型的 (图1) ICP是改进自对应点集配准算法的 对应点集配准…
​蝶恋花·槛菊愁烟兰泣露 槛菊愁烟兰泣露,罗幕轻寒,燕子双飞去. 明月不谙离恨苦,斜光到晓穿朱户. 昨夜西风凋碧树,独上高楼,望尽天涯路. 欲寄彩笺兼尺素.山长水阔知何处? --晏殊 导读: 3D点云配准是计算机视觉的关键研究问题之一,在多领域工程应用中具有重要应用,如逆向工程.SLAM.图像处理和模式识别等.点云配准的目的是求解出同一坐标下不同姿态点云的变换矩阵,利用该矩阵实现多视扫描点云的精确配准,最终获取完整的3D数字模型.场景.本质上,关于六自由度(旋转和平移)的3D点云配准问题是典型的…