ARTS-S pytorch用c++实现推理】的更多相关文章

训练的代码,以cifar为例 # -*- coding: utf-8 -*- import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn import torch.nn.functional as F import torch.optim as optim transform = transforms.Compose( [transforms.ToTensor(…
项目地址:https://github.com/bharathgs/Awesome-pytorch-list 列表结构: NLP 与语音处理 计算机视觉 概率/生成库 其他库 教程与示例 论文实现 PyTorch 其他项目 自然语言处理和语音处理 该部分项目涉及语音识别.多说话人语音处理.机器翻译.共指消解.情感分类.词嵌入/表征.语音生成.文本语音转换.视觉问答等任务,其中有一些是具体论文的 PyTorch 复现,此外还包括一些任务更广泛的库.工具集.框架. 这些项目有很多是官方的实现,其中…
继上一篇计划的实践项目,这篇记录我训练模型相关的工作. 首先要确定总体目标:训练一个pytorch模型,CIFAR-100数据集测试集acc达到90%:部署后推理效率达到50ms/张, 部署平台为window10+3050Ti+RX5800h. 训练模型的话,最好是有一套完备的代码,像谷歌的models,FB的detectron2,商汤的mm系列等等框架,这些是建立在深度学习框架tf或pth基础上的进一步封装,提供一些更高级的写好的模块可以调用,如Resnet.FPN..proposal.NMS…
摘要:MindStudio的是一套基于华为自研昇腾AI处理器开发的AI全栈开发工具平台,该IDE上功能很多,涵盖面广,可以进行包括网络模型训练.移植.应用开发.推理运行及自定义算子开发等多种任务. 本文分享自华为云社区<使用MindStudio进行Pytorch离线推理全流程>,作者:yd_281378454. 1 MindStudio环境搭建 本次实验在MindStudio上进行,请先按照教程配置环境,安装MindStudio. MindStudio的是一套基于华为自研昇腾AI处理器开发的A…
本文首发于个人博客https://kezunlin.me/post/bcdfb73c/,欢迎阅读最新内容! tensorrt fp32 fp16 tutorial with caffe pytorch minist model Series Part 1: install and configure tensorrt 4 on ubuntu 16.04 Part 2: tensorrt fp32 fp16 tutorial Part 3: tensorrt int8 tutorial Code…
[导读]Kears作者François Chollet刚刚在Twitter贴出最近三个月在arXiv提到的深度学习框架,TensorFlow不出意外排名第一,Keras排名第二.随后是Caffe.PyTorch和Theano,再次是MXNet.Chainer和CNTK. Keras作者François Chollet刚刚在Twitter贴出一张图片,是近三个月来arXiv上提到的深度学习开源框架排行: TensorFlow排名第一,这个或许并不出意外,Keras排名第二,随后是Caffe.PyT…
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 torch.autograd就是为了方便用户使用,专门开发的一套自动求导引擎,她能够根据输入和前向传播过程自动构建计算图,并执行反向传播 1.Variable 深度学习算法的本质是通过反向函数求导数,pytorch的Autograd模块实现了此功能.在Tensor上的所有操作,Autograd都能够为他们自动提供微分,避免手动计算的复杂…
在PyTorch中计算图的特点可总结如下: autograd根据用户对variable的操作构建其计算图.对变量的操作抽象为Function. 对于那些不是任何函数(Function)的输出,由用户创建的节点称为叶子节点,叶子节点的grad_fn为None.叶子节点中需要求导的variable,具有AccumulateGrad标识,因其梯度是累加的. variable默认是不需要求导的,即requires_grad属性默认为False,如果某一个节点requires_grad被设置为True,那…
原文地址: https://blog.csdn.net/weixin_40100431/article/details/84349470 ----------------------------------------------------------------------------------------- 最近修改一个代码的时候,当使用网络进行推理的时候,发现每次更改测试集的batch size大小竟然会导致推理结果不同,甚至产生错误结果,后来发现在网络中定义了BN层,BN层在训练过程…
http://www.sohu.com/a/164171974_741733   本文收集了大量基于 PyTorch 实现的代码链接,其中有适用于深度学习新手的“入门指导系列”,也有适用于老司机的论文代码实现,包括 Attention Based CNN.A3C.WGAN等等.所有代码均按照所属技术领域分类,包括机器视觉/图像相关.自然语言处理相关.强化学习相关等等.所以如果你打算入手这风行一世的 PyTorch 技术,那么就快快收藏本文吧! PyTorch 是什么? PyTorch即 Torc…
Stacked Hourglass Networks(级联漏斗网络) 姿态估计(Pose Estimation)是 CV 领域一个非常重要的方向,而级联漏斗网络的提出就是为了提升姿态估计的效果,但是其中的经典思想可以扩展到其他方向,比如目标识别方向,代表网络是 CornerNet(预测目标的左上角和右下角点,再进行组合画框). CNN 之所以有效,是因为它能自动提取出对分类.检测和识别等任务有帮助的特征,并且随着网络层数的增加,所提取的特征逐渐变得抽象.以人脸识别为例,低层卷积网络能够提取出一些…
本文收集了大量PyTorch项目(备查) 转自:https://blog.csdn.net/fuckliuwenl/article/details/80554182 目录: 入门系列教程 入门实例 图像.视觉.CNN相关实现 对抗生成网络.生成模型.GAN相关实现 机器翻译.问答系统.NLP相关实现 先进视觉推理系统 深度强化学习相关实现 通用神经网络高级应用 入门系列教程 PyTorch Tutorials https://github.com/MorvanZhou/PyTorch-Tutor…
在上一节中,我们介绍了如何使用Pytorch来搭建一个经典的分类神经网络.一般情况下,搭建完模型后训练不会一次就能达到比较好的效果,这样,就需要不断的调整和优化模型的各个部分.从而引出了本文的主旨:如何优化模型. 在本节中,我们将介绍从数据集到模型各个部分的调整,从而可以有一个完整的解决思路. 1.数据集部分 1.1 数据集划分 一般情况下,我们会把数据集分成三个部分:训练集,验证集和测试集.依据数据集的大小,如果数据集比较大,数万或数十万个,可以将数据集采用7:2:1或8:1:1的比例来划分.…
https://github.com/ultralytics/yolov3 Introduction简介 This directory contains PyTorch YOLOv3 software developed by Ultralytics LLC, and is freely available for redistribution under the GPL-3.0 license. For more information please visit https://www.ult…
参考Getting Started with PyTorch Part 1: Understanding how Automatic Differentiation works 非常好的文章,讲解的非常细致. 注意这篇文章基于v0.3,其中的Variable和Tensor在后来把版本中已经合并. from torch import FloatTensor from torch.autograd import Variable # Define the leaf nodes a = Variabl…
ELMo的概念也是很早就出了,应该是18年初的事情了.但我仍然是后知后觉,居然还是等BERT出来很久之后,才知道有这么个东西.这两天才仔细看了下论文和源码,在这里做一些记录,如果有不详实的地方,欢迎指出~ 文章目录前言一. ELMo原理1. ELMo整体模型结构2. 字符编码层3. biLMs原理4. 生成ELMo词向量5. 结合下游NLP任务二. PyTorch实现1. 字符编码层2. biLMs层3. 生成ELMo词向量三. 实验四. 一些分析1. 使用哪些层的输出?2. 在哪里加入ELMo…
BERT 预训练模型及文本分类 介绍 如果你关注自然语言处理技术的发展,那你一定听说过 BERT,它的诞生对自然语言处理领域具有着里程碑式的意义.本次试验将介绍 BERT 的模型结构,以及将其应用于文本分类实践. 知识点 语言模型和词向量 BERT 结构详解 BERT 文本分类 BERT 全称为 Bidirectional Encoder Representations from Transformer,是谷歌在 2018 年 10 月发布的语言表示模型.BERT 通过维基百科和书籍语料组成的庞…
概述 学习如何使用PyTorch执行文本分类 理解解决文本分类时所涉及的要点 学习使用包填充(Pack Padding)特性 介绍 我总是使用最先进的架构来在一些比赛提交模型结果.得益于PyTorch.Keras和TensorFlow等深度学习框架,实现最先进的体系结构变得非常容易.这些框架提供了一种简单的方法来实现复杂的模型体系结构和算法,而只需要很少的概念知识和代码技能.简而言之,它们是数据科学社区的一座金矿! 在本文中,我们将使用PyTorch,它以其快速的计算能力而闻名.因此,在本文中,…
在本教程中,我们将使用Flask来部署PyTorch模型,并用讲解用于模型推断的 REST API.特别是,我们将部署一个预训练的DenseNet 121模 型来检测图像. 备注: 可在GitHub上获取本文用到的完整代码 这是在生产中部署PyTorch模型的系列教程中的第一篇.到目前为止,以这种方式使用Flask是开始为PyTorch模型提供服务的最简单方法, 但不适用于具有高性能要求的用例.因此: 如果您已经熟悉TorchScript,则可以直接进入我们的Loading a TorchScr…
欢迎关注磐创博客资源汇总站: http://docs.panchuang.net/ 欢迎关注PyTorch官方中文教程站: http://pytorch.panchuang.net/ 专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60分钟入门 PyTorch入门 PyTorch自动微分 PyTorch神经网络 PyTorch图像分类器 PyTorch数据并行处理 第三章:PyTorch之入门强化 数据加载和处理 PyTorch…
淘宝上用的移动AI技术,你也可以用在自己的产品中了. 刚刚,阿里巴巴宣布,开源自家轻量级的深度神经网络推理引擎MNN(Mobile Neural Network),用于在智能手机.IoT设备等端侧加载深度神经网络模型,进行推理预测. 这是阿里开源的首个移动AI项目,已经用于阿里手机淘宝.手机天猫.优酷等20多个应用之中.覆盖直播.短视频.搜索推荐.商品图像搜索.互动营销.权益发放.安全风控等场景.在IoT等移动设备场景下,也有若干应用. 阿里表示,在iOS.Android的CPU.GPU性能上,…
桔妹导读:「滴滴技术」将于本月开始,联合各技术团队为大家带来精彩分享.你想了解的技术干货,深度专访,团队及招聘将于每周三与你准时见面.本月为「滴滴云平台事业群分享月」,在今天的内容中,云平台事业群-机器学习平台团队与你聊一聊AI技术在滴滴平台上的实践思考.IFX 团队经过 2年多的奋斗,已将 AI 部署服务于公司安全.地图.车载.普惠.车服.IT等业务团队,覆盖司乘 APP,桔视设备,代驾记录仪,AIBox(边缘计算 AI 盒子),国际化司乘 APP 等智能化需求的场景,覆盖千万级别设备,千亿级…
0. 引子 在训练轻量化模型时,经常发生的情况就是,明明 GPU 很闲,可速度就是上不去,用了多张卡并行也没有太大改善. 如果什么优化都不做,仅仅是使用nn.DataParallel这个模块,那么实测大概只能实现一点几倍的加速(按每秒处理的总图片数计算),不管用多少张卡.因为卡越多,数据传输的开销就越大,副作用就越大. 为了提高GPU服务器的资源利用率,尝试了一些加速的手段. 基于Pytorch1.6.0版本实现,官方支持amp功能,不再需要外部apex库: 此外比较重要的库是Dali. 梳理了…
AMP:Automatic mixed precision,自动混合精度,可以在神经网络推理过程中,针对不同的层,采用不同的数据精度进行计算,从而实现节省显存和加快速度的目的. 在Pytorch 1.5版本及以前,通过NVIDIA出品的插件apex,可以实现amp功能. 从Pytorch 1.6版本以后,Pytorch将amp的功能吸收入官方库,位于torch.cuda.amp模块下. 本文为针对官方文档主要内容的简要翻译和自己的理解. 1. Introduction torch.cuda.am…
作者: Jiaming Song, Dongjie Shi, Gong, Qiyuan, Lei Xia, Wei Du, Jason Dai 随着深度学习项目从实验到生产的发展,越来越多的应用需要对深度学习模型进行大规模和实时的分布式推理服务.虽然已经有一些工具可用于相关任务(如模型优化.服务.集群调度.工作流管理等等),但对于许多深度学习的工程师和科学家来说,开发和部署能够透明地扩展到大型集群的分布式推理工作流仍然是一个具有挑战性的过程. 为了应对这一挑战,我们在Analytics Zoo…
[新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx645016617. 参考目录: 目录 0 为什么学TF 1 Tensorflow的安装 2 数据集构建 2 预处理 3 构建模型 4 优化器 5 训练与预测 0 为什么学TF 之前的15节课的pytorch的学习,应该是让不少朋友对PyTorch有了一个全面而深刻的认识了吧 (如果你认真跑代码了并且认真看文章了的…
本来是只用Tenorflow的,但是因为TF有些Numpy特性并不支持,比如对数组使用列表进行切片,所以只能转战Pytorch了(pytorch是支持的).还好Pytorch比较容易上手,几乎完美复制了Numpy的特性(但还有一些特性不支持),怪不得热度上升得这么快. 模型定义 和TF很像,Pytorch也通过继承父类来搭建模型,同样也是实现两个方法.在TF中是__init__()和call(),在Pytorch中则是__init__()和forward().功能类似,都分别是初始化模型内部结构…
英特尔与 Facebook 曾联手合作,在多卡训练工作负载中验证了 BFloat16 (BF16) 的优势:在不修改训练超参数的情况下,BFloat16 与单精度 32 位浮点数 (FP32) 得到了相同的准确率.现在,英特尔发布了第三代英特尔 至强 可扩展处理器(代号 Cooper Lake),该处理器集成了支持 BF16 的英特尔 深度学习加速技术(英特尔 DL Boost),可大幅提升训练和推理能力,并且也支持去年推出的英特尔 深度学习 INT8 加速技术. 英特尔和 Facebook 不…
MNIST手写数字识别教程 要开始带组内的小朋友了,特意出一个Pytorch教程来指导一下 [!] 这里是实战教程,默认读者已经学会了部分深度学习原理,若有不懂的地方可以先停下来查查资料 目录 MNIST手写数字识别教程 1 什么是MNIST? 2 使用Pytorch实现手写数字识别 2.1 任务目的 2.2 开发环境 2.3 实现流程 3 具体代码实现 3.1 数据预处理部分 3.1.1 初始化全局变量 3.1.2 构建数据集 3.2 训练部分 3.2.1 构建模型 3.2.2 构建迭代器与损…
继续上一篇的内容,上一篇讲解了Bootstrap Your Onw Latent自监督模型的论文和结构: https://juejin.cn/post/6922347006144970760 现在我们看看如何用pytorch来实现这个结构,并且在学习的过程中加深对论文的理解. github:https://github.com/lucidrains/byol-pytorch [前沿]:这个代码我没有实际跑过,毕竟我只是一个没有GPU的小可怜. 主要模型代码 class BYOL(nn.Modul…