[NOI1995]石子合并 题解】的更多相关文章

P1880 [NOI1995]石子合并 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分. 输入格式 数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数. 输出格式 输出共2行,第1行为最小得分,第2行为最大得分. 输入输出样例 输入 #1 4 4 5 9 4 输出 #1 43 5…
一道经典的dp题 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分. 我们先看下这道题的简单版本 有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆.求出总的代价最小值. 这道题不是环状的,我们可以直接dp解决,…
P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. #include<bits/stdc++.h> using namespace std; typedef long long ll; typedef double db; template<typename T>inline :;} template<typename T>i…
区间类动态规划 一.基本概念 区间类动态规划是线性动态规划的拓展,它在分阶段划分问题时,与阶段中元素出现的顺序和由前一阶段的那些元素合并而来由很大的关系.例如状态f [ i ][ j ],它表示以已合并的次数为阶段,以区间的左端点 i 为状态,它的值取决于第 i 个元素和第 j 个元素断开的位置 k,即 f [ i ][ k ] + f [ k+1 ][ j ]的值.这一类型的动态规划,阶段特征非常明显,求最优值时需要预先设置阶段内的区间统计值,还要以动态规划的起始位置来判断.  区间类动态规划…
P1880 [NOI1995]石子合并 #include <bits/stdc++.h> using namespace std; ; const int inf = 0x3f3f3f3f; int cost1[maxn][maxn], cost2[maxn][maxn]; //当前合并的代价 int dp1[maxn][maxn], dp2[maxn][maxn]; int main() { int n; cin >> n; ; i <= n; i++) { cin >…
记录一下第一道ac的区间dp 题目:P1880 [NOI1995] 石子合并 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码: #include <iostream> using namespace std; typedef long long ll; int a[210], dpmax[210][210], dpmin[210][210], sum[210], ma = -1, mi = 1000000000; int main() { ios::sync_with_…
传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合并问题是一排,而此问题是一个圈,也就意味着最后一堆石子可已选择第一堆石子,那这要怎么做呢? 其实方法很简单,在n堆石子后额外增加(n-1)堆石子,这(n-1)堆石子不是随意造的,其个数与前(n-1)堆石子一一对应. 然后,就是经典的石子合并问题了. 对于 1 到 2*n-1堆石子,进行区间最优解的查…
区间DP模板题 区间DP模板Code: ;len<=n;len++) { ;i<=*n-;i++) //区间左端点 { ; //区间右端点 for(int k=i;k<j;k++) //断点位置 { f[i][j] = min(f[i][j],f[i][k] + f[k + ][j] + s[j] - s[i - ]); } } } 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分.…
题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分. 输入输出格式 输入格式: 数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数. 输出格式: 输出共2行,第1行为最小得分,第2行为最大得分. 输入输出样例 输入样例#1: 复制 4 4 5 9 4 输出样例#1: 复制 43 54…
https://www.luogu.org/problemnew/show/P1880 区间dp,顾名思义,是以区间为阶段的一种线性dp的拓展 状态常定义为$f[i][j]$,表示区间[i,j]的某种解; 通常先枚举区间长度,再枚举左端点,最后枚举断点(k) 石子合并便是一道经典的区间dp #include <bits/stdc++.h> #define read read() #define up(i,l,r) for(int i = (l);i <= (r); i++) #defin…