降维和PCA】的更多相关文章

简介 要理解什么是降维,书上给出了一个很好但是有点抽象的例子. 说,看电视的时候屏幕上有成百上千万的像素点,那么其实每个画面都是一个上千万维度的数据:但是我们在观看的时候大脑自动把电视里面的场景放在我们所能理解的三维空间来理解,这个很自然的过程其实就是一个降维(dimensionallity reduction)的过程 降维有什么作用呢? 数据在低维下更容易处理.更容易使用: 相关特征,特别是重要特征更能在数据中明确的显示出来:如果只有两维或者三维的话,更便于可视化展示: 去除数据噪声 降低算法…
1.PCA降维 降维有什么作用呢?数据在低维下更容易处理.更容易使用:相关特征,特别是重要特征更能在数据中明确的显示出来:如果只有两维或者三维的话,更便于可视化展示:去除数据噪声降低算法开销 常见的降维算法有主成分分析(principal component analysis,PCA).因子分析(Factor Analysis)和独立成分分析(Independent Component Analysis,ICA),其中PCA是目前应用最为广泛的方法. 在PCA中,数据从原来的坐标系转换到新的坐标…
转载地址:http://blog.csdn.net/watkinsong/article/details/38536463 1. 前言 PCA : principal component analysis ( 主成分分析) 最近发现我的一篇关于PCA算法总结以及个人理解的博客的访问量比较高, 刚好目前又重新学习了一下PCA (主成分分析) 降维算法, 所以打算把目前掌握的做个全面的整理总结, 能够对有需要的人有帮助. 自己再看自己写的那个关于PCA的博客, 发现还是比较混乱的, 希望这里能过做好…
0. 引言 本文主要的目的在于讨论PAC降维和SVD特征提取原理,围绕这一主题,在文章的开头从涉及的相关矩阵原理切入,逐步深入讨论,希望能够学习这一领域问题的读者朋友有帮助. 这里推荐Mit的Gilbert Strang教授的线性代数课程,讲的非常好,循循善诱,深入浅出. Relevant Link:  Gilbert Strang教授的MIT公开课:数据分析.信号处理和机器学习中的矩阵方法 https://mp.weixin.qq.com/s/gi0RppHB4UFo4Vh2Neonfw 1.…
文章目录 加载package read data PCA 降维探索 选择50维度, 拆分数据为训练集,测试机 KNN PCA降维和K值筛选 分析k & 维度 vs 精度 预测 生成提交文件 本文采用PCA+KNN的方法进行kaggle手写数字识别,训练数据共有42000行,每行代表一幅数字图片,共有784列(一副数字图像是28*28像素,将一副图像展开为一行即784),更多关于Digit Recognizer项目的介绍https://www.kaggle.com/c/digit-recogniz…
即将进入涉及大量数学知识的阶段,先读下“别人家”的博文放松一下. 读罢该文,基本能了解面部识别领域的整体状况. 后生可畏. 结尾的Google Facenet中的2亿数据集,仿佛隐约听到:“你们都玩儿蛋去吧”. 长文干货!走近人脸检测:从 VJ 到深度学习(上) 长文干活!走进人脸检测:从 VJ 到深度学习(下) Ello 戏说系列 人脸识别简史与近期发展 人脸检测的开始和基本流程 具体来说,人脸检测的任务就是判断给定的图像上是否存在人脸, 如果人脸存在,就给出全部人脸所处的位置及其大小.由于人…
自动人脸识别的经典流程分为三个步骤:人脸检测.面部特征点定位(又称Face Alignment人脸对齐).特征提取与分类器设计.一般而言,狭义的人脸识别指的是"特征提取+分类器"两部分的算法研究. 在深度学习出现以前,人脸识别方法一般分为高维人工特征提取(例如:LBP, Gabor等)和降维两个步骤,代表性的降维方法有PCA, LDA等子空间学习方法和LPP等流行学习方法.在深度学习方法流行之后,代表性方法为从原始的图像空间直接学习判别性的人脸表示. 一般而言,人脸识别的研究历史可以分…
目录 k-means k-means API k-means对Instacart Market用户聚类 Kmeans性能评估指标 Kmeans性能评估指标API Kmeans总结 无监督学习,顾名思义,就是不受监督的学习,一种自由的学习方式.该学习方式不需要先验知识进行指导,而是不断地自我认知,自我巩固,最后进行自我归纳,在机器学习中,无监督学习可以被简单理解为不为训练集提供对应的类别标识(label),其与有监督学习的对比如下: 有监督学习(Supervised Learning). 在有监督…
博主在前一篇博客中介绍了GoogLeNet 之 Inception-v1 解读中的结构和思想.Inception的计算成本也远低于VGGNet.然而,Inception架构的复杂性使得更难以对网络进行更改.如果单纯地放大架构,大部分的计算收益可能会立即丢失.这通过大量使用降维和Inception模块的并行结构来实现,这允许减轻结构变化对邻近组件的影响.但是,对于这样做需要谨慎,因为应该遵守一些指导原则来保持模型的高质量. 1 基本原则 要防止出现特征描述的瓶颈(representational…
即将进入涉及大量数学知识的阶段,先读下“别人家”的博文放松一下. 读罢该文,基本能了解面部识别领域的整体状况. 后生可畏. 结尾的Google Facenet中的2亿数据集,仿佛隐约听到:“你们都玩儿蛋去吧”. 长文干货!走近人脸检测:从 VJ 到深度学习(上) 长文干活!走进人脸检测:从 VJ 到深度学习(下) Ello 戏说系列 人脸识别简史与近期发展 人脸检测的开始和基本流程 具体来说,人脸检测的任务就是判断给定的图像上是否存在人脸, 如果人脸存在,就给出全部人脸所处的位置及其大小.由于人…
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 参考资料 https://www.cnblogs.com/webRobot/p/9034079.html 逻辑回归重点: 1.sigmoid函数(…
关于word2vec的理解,推荐文章https://www.cnblogs.com/guoyaohua/p/9240336.html 代码参考https://github.com/eecrazy/word2vec_chinese_annotation 我在其基础上修改了错误的部分,并添加了一些注释. 代码在jupyter notebook下运行. from __future__ import print_function #表示不管哪个python版本,使用最新的print语法 import c…
为了方便后面对ottertune进行魔(hu)改(gao),需要先搞清楚它的源码结构和pipeline OtterTune分为两大部分: server side: 包括一个MySQL数据库(用于存储调优数据,供ml model用),Django(FrontEnd User Interface),Celery(用于调度ML task): client side: Target_DBMS(存储用户的业务数据用,支持多种DBMS),Controller(用于控制target DBMS),Driver(…
import numpy as np # 将二维数据降成1维 num = [(2.5, 2.4), (0.5, 0.7), (2.2, 2.9), (1.9, 2.2), (3.1, 3.0), (2.3, 2.7), (2, 1.6), (1, 1.1), (1.5, 1.6), (1.1, 0.9)] num_array = np.array(num) n1_avg, n2_avg = np.mean(num_array[:, 0]), np.mean(num_array[:, 1]) #…
对于维数比较多的数据,首先需要做的事就是在尽量保证数据本质的前提下将数据中的维数降低.降维是一种数据集预处理技术,往往在数据应用在其他算法之前使用,它可以去除掉数据的一些冗余信息和噪声,使数据变得更加简单高效,从而实现提升数据处理速度的目的,节省大量的时间和成本.降维也成为了应用非常广泛的数据预处理方法.目前处理降维的技术有很多种,如SVD奇异值分解,主成分分析(PCA),因子分析(FA),独立成分分析(ICA)等. 以下是使用主成分分析(PCA)进行降维: import matplotlib.…
import numpy as np 第一步:原始值 X1 0.9 2.4 1.2 0.5 0.3 1.8 0.5 0.3 2.5 1.3 X2 1 2.6 1.7 0.7 0.7 1.4 0.6 0.6 2.6 1.1 第二步:计算平均值 =1.17,np.mean(x1)=1.1700000000000002 =1.3,  np.mean(x2)=1.3 第三步:X1 - ,X2 - ,得到如下表格 X11 0.9-=-0.27 2.4-=1.23 1.2-=0.03 0.5-=-0.67…
A tutorial on Principal Components Analysis 原著:Lindsay I Smith, A tutorial on Principal Components Analysis, February 26, 2002. 翻译:houchaoqun.时间:2017/01/18.出处:http://blog.csdn.net/houchaoqun_xmu  |  http://blog.csdn.net/Houchaoqun_XMU/article/details…
在主成分分析(PCA)原理总结中,我们对主成分分析(以下简称PCA)的原理做了总结,下面我们就总结下如何使用scikit-learn工具来进行PCA降维. 1. scikit-learn PCA类介绍 在scikit-learn中,与PCA相关的类都在sklearn.decomposition包中.最常用的PCA类就是sklearn.decomposition.PCA,我们下面主要也会讲解基于这个类的使用的方法. 除了PCA类以外,最常用的PCA相关类还有KernelPCA类,在原理篇我们也讲到…
主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一.在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用.一般我们提到降维最容易想到的算法就是PCA,下面我们就对PCA的原理做一个总结. 1. PCA的思想 PCA顾名思义,就是找出数据里最主要的方面,用数据里最主要的方面来代替原始数据.具体的,假如我们的数据集是n维的,共有m个数据$(x^{(1)},x^{(2)},...,x^{(m)})$.我们希望将这m个数据的维度从n维降到n'维…
写在前面:本来这篇应该是上周四更新,但是上周四写了一篇深度学习的反向传播法的过程,就推迟更新了.本来想参考PRML来写,但是发现里面涉及到比较多的数学知识,写出来可能不好理解,我决定还是用最通俗的方法解释PCA,并举一个实例一步步计算,然后再进行数学推导,最后再介绍一些变种以及相应的程序.(数学推导及变种下次再写好了) 正文: 在数据处理中,经常会遇到特征维度比样本数量多得多的情况,如果拿到实际工程中去跑,效果不一定好.一是因为冗余的特征会带来一些噪音,影响计算的结果:二是因为无关的特征会加大计…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
Introduction 主成分分析(Principal Components Analysis)是一种对特征进行降维的方法.由于观测指标间存在相关性,将导致信息的重叠与低效,我们倾向于用少量的.尽可能多能反映原特征的新特征来替代他们,主成分分析因此产生.主成分分析可以看成是高维空间通过旋转坐标系找到最佳投影(几何上),生成新维度,其中新坐标轴每一个维度都是原维度的线性组合\(\theta'X\)(数学上),满足: 新维度特征之间的相关性尽可能小 参数空间\(\theta\)有界 方差尽可能大,…
运用PCA对高维数据进行降维,有一下几个特点: (1)数据从高维空间降到低维,因为求方差的缘故,相似的特征会被合并掉,因此数据会缩减,特征的个数会减小,这有利于防止过拟合现象的出现.但PCA并不是一种好的防止过拟合的方法,在防止过拟合的时候,最好是对数据进行正则化: (2)使用降维的方法,使算法的运行速度加快: (3)减少用来存储数据的内存空间: (4)从x(i)到z(i)的映射过程中,对训练数据进行降维,然后对测试数据或验证数据进行降维:…
大家看了之后,可以点一波关注或者推荐一下,以后我也会尽心尽力地写出好的文章和大家分享. 本文先导:在我们平时看NBA的时候,可能我们只关心球员是否能把球打进,而不太关心这个球的颜色,品牌,只要有3D效果,看到球员扣篮的动作就可以了,比如下图: 如果我们直接对篮球照片进行几百万像素的处理,会有几千维甚至几万维的数据要计算,计算量很大.而往往我们只需要大概勾勒出篮球的大概形状就可以描述问题,所以必须对此类数据降维,这样会使处理数据更加轻松.这个在人脸识别中必须要降维,因为我们在做特征提取的时候几万维…
一.一些概念 线性相关:其中一个向量可以由其他向量线性表出. 线性无关:其中一个向量不可以由其他向量线性表出,或者另一种说法是找不到一个X不等于0,能够使得AX=0.如果对于一个矩阵A来说它的列是线性无关的,则AX=0,只有0解,此时矩阵A可逆. 秩:线性无关向量个数. 基: 特征向量:向量X经过矩阵A旋转后,与原来的X共线,.即为特征值,表示向量的伸缩.如果把矩阵看成进行线性变化的矩阵(旋转,拉伸),那么特征向量就是这样一种向量,它经过这种特定的变换后保持方向不变,只是进行长度上的伸缩而已.反…
MATLAB基础知识 l  Imread:  读取图片信息: l  axis:轴缩放:axis([xmin xmax ymin ymax zmin zmax cmin cmax]) 设置 x.y 和 z 轴范围以及颜色缩放范围(请参阅 caxis).v = axis 返回包含 x.y 和 z 轴缩放因子的行矢量.v 具有 4 或 6 个分量,具体分别取决于当前坐标轴是二维还是三维.返回值是当前坐标轴的 XLim.Ylim 和 ZLim 属性.   基于 x.y 和 z 数据的最小值和最大值,ax…
http://blog.json.tw/using-matlab-implementing-pca-dimension-reduction 設有m筆資料, 每筆資料皆為n維, 如此可將他們視為一個mxn matrix.若資料的維度太大時, 可能不利於分析, 例如這m筆資料用作機器學習. PCA的想法是算出這mxn matrix的斜方差矩陣, 此矩陣大小為nxn, 計算此矩陣n個特徵值(eigen value)及其對應的特徵向量(eigen vector), 依eigen value大小由小到大排…
我理解PCA应该分为2个过程:1.求出降维矩阵:2.利用得到的降维矩阵,对数据/特征做降维. 这里分成了两篇博客,来做总结. http://matlabdatamining.blogspot.com/2010/02/principal-components-analysis.html 英文Principal Components Analysis的博客,这种思路挺好,但是有2处写错了,下面有标注. http://www.cnblogs.com/denny402/p/4020831.html 这个…
这篇博客会以攻略形式介绍PCA在前世今生. 其实,主成分分析知识一种分析算法,他的前生:应用场景:后世:输出结果的去向,在网上的博客都没有详细的提示.这里,我将从应用场景开始,介绍到得出PCA结果后,接下来的后续操作. 前世篇 我们要先从多元线性回归开始.对图9-3作一下多远线性回归 X1——总产值,X2——存储量,X3——总消费,Y——进口总额 从最直白的讲,对Y进行多元线性回归分析,就是在X1,X2,X3前加个系数,然后总体相加的结果,越接近越好. 用R的多远线性归回方法分析看看: cono…
在对数据进行预处理时,我们经常会遇到数据的维数非常之大,如果不进行相应的特征处理,那么算法的资源开销会很大,这在很多场景下是我们不能接受的.而对于数据的若干维度之间往往会存在较大的相关性,如果能将数据的维度之间进行相应的处理,使它们在保留最大数据信息的同时降低维度之间的相关性,就可以达到降维的效果.PCA(主成分分析)便是利用这样的概念将数据映射到新的维度空间中,选择最重要的几个成分作为新空间向量的基,这样在新的坐标空间中,数据既可以保留大部分的数据信息又可以达到降维的效果.在机器学习实战中对于…