错误率 在常见的具体机器学习算法模型中,一般都使用错误率来优化loss function来保证模型达到最优. \[错误率=\frac{分类错误的样本}{样本总数}\] \[error=\frac{1}{m} \sum_{i=1}^{m} I(f(x_{i})\neq y_{i})\] 但是错误率有一个严重的缺点: 错误率会掩盖样本如何被错误分类事实,这样对于有的问题很难进行下一步的分析 混淆矩阵 confusion matrix 真正例: True Positive 真反例: True Nega…
在IJCAI 于2015年举办的竞赛:Repeat Buyers Prediction Competition 中, 很多参赛队伍在最终的Slides展示中都表示使用了 AUC 作为评估指标:     那么,AUC是什么呢? AUC是一个机器学习性能度量指标,只能用于二分类模型的评价.(拓展二分类模型的其他评价指标:logloss.accuracy.precision)   对于二分类问题,可将样例根据其真实类别与学习器预测类别的组合划分为真正例(true positive).假正例(false…
评估指标 Evaluation metrics 机器学习性能评估指标 选择合适的指标 分类与回归的不同性能指标 分类的指标(准确率.精确率.召回率和 F 分数) 回归的指标(平均绝对误差和均方误差) 混淆矩阵(confusion matricess) 一.选择合适的指标 评估模型是否得到改善,总体表现如何 在构建机器学习模型时,我们首先要选择性能指标,然后测试模型的表现如何.相关的指标有多个,具体取决于我们要尝试解决的问题. 此外,在测试模型时,也务必要将数据集分解为训练数据和测试数据.如果不区…
原创博文,转载请注明出处! 1.ROC曲线介绍 ROC曲线适用场景 二分类任务中,positive和negtive同样重要时,适合用ROC曲线评价 ROC曲线的意义 TPR的增长是以FPR的增长为代价 2.ROC曲线绘制 纵坐标为TPR TPR(True Positive Rate)真正确率,即模型正确识别正例的比例,TPR=TP/(TP+FN) 横坐标为FPR FPR(False Positive Rate)假正确率,即模型错误将反例识别为正例的比例,FPR=FP/(FP+TN) ROC曲线的…
混淆矩阵 介绍这些概念之前先来介绍一个概念:混淆矩阵(confusion matrix).对于 k 元分类,其实它就是一个k x k的表格,用来记录分类器的预测结果.对于常见的二元分类,它的混淆矩阵是 2x2 的. 假设要对 15 个人预测是否患病,使用 1 表示患病,使用 0 表示正常.预测结果如下: 预测值: 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 真实值: 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 将上面的预测结果转为混淆矩阵,如下: 上图展示了一个二…
1.混淆矩阵 下图是一个二类问题的混淆矩阵,其中的输出采用了不同的类别标签 常用的衡量分类性能的指标有: 正确率(Precision),它等于 TP/(TP+FP) ,给出的是预测为正例的样本中的真正正例的比例. 召回率(Recall),他等于 TP/(TP+FN),给出的是预测为正例的真实正例占所有真实正例的比例. 2.ROC曲线 图中的横轴是伪正例的比例(假阳率=FP/(FP+TN)),而纵轴是真正例的比例(真阳率=TP/(TP+FN)).ROC曲线给出的是当阈值变化时假阳率和真阳率的变化情…
http://blog.csdn.net/u012089317/article/details/52156514 ,y^)=1nsamples∑i=1nsamples(yi−y^i)2…
MTF(Modulation Transfer Function,模量传递函数),是目前分析镜头解像能力的方法,可以用来评判镜头还原物体对比度的能力.说到MTF,不得不先提一下衡量镜头性能的两在重要指标--分辨率和反差. 一.分辨率: 分辨率(Resolution)又称分辨力.鉴别率.鉴别力.分析力.解像力和分辨本领,是指摄影镜头清晰地再现被摄景物纤微能力.显然分辨率越高的镜头,所拍摄的影像越清晰细腻.它的单位是"线对.毫米".它的可以量化,用数据表示,使直观.更科学.更严密. 二.反…
AUC(Area under Curve):Roc曲线下的面积,介于0.1和1之间.Auc作为数值可以直观的评价分类器的好坏,值越大越好. 首先AUC值是一个概率值,当你随机挑选一个正样本以及负样本,当前的分类算法根据计算得到的Score值将这个正样本排在负样本前面的概率就是AUC值,AUC值越大,当前分类算法越有可能将正样本排在负样本前面,从而能够更好地分类. 1. 什么是ROC曲线? ROC曲线是Receiver operating characteristic curve的简称,中文名为“…
1.评价指标的局限性 问题1 准确性的局限性 准确率是分类问题中最简单也是最直观的评价指标,但存在明显的缺陷.比如,当负样本占99%时,分类器把所有样本都预测为负样本也可以获得99%的准确率.所以,当不同类别的样本比例非常不均衡时,占比大的类别往往成为影响准确率的最主要因素. 例子:Hulu的奢侈品广告主希望把广告定向投放给奢侈品用户.Hulu通过第三方的数据管理平台拿到了一部分奢侈品用户的数据,并以此为训练集和测试集,训练和测试奢侈品用户的分类模型,该模型的分类准确率超过了95%,但在实际广告…