这里我们会用 Python 实现三个简单的卷积神经网络模型:LeNet .AlexNet .VGGNet,首先我们需要了解三大基础数据集:MNIST 数据集.Cifar 数据集和 ImageNet 数据集 三大基础数据集 MNIST 数据集 MNIST数据集是用作手写体识别的数据集.MNIST 数据集包含 60000 张训练图片,10000 张测试图片.其中每一张图片都是 0~9 中的一个数字.图片尺寸为 28×28.由于数据集中数据相对比较简单,人工标注错误率仅为 0.2%. Cifar 数据…
# 手写数字识别 ----卷积神经网络模型 import os import tensorflow as tf #部分注释来源于 # http://www.cnblogs.com/rgvb178/p/6052541.html from tensorflow.examples.tutorials.mnist import input_data data = input_data.read_data_sets("/tmp/data/", one_hot=True) '''获取程序集'''…
首先看一下卷积神经网络模型,如下图: 卷积神经网络(CNN)由输入层.卷积层.激活函数.池化层.全连接层组成,即INPUT-CONV-RELU-POOL-FC池化层:为了减少运算量和数据维度而设置的一种层. 代码如下: n_input = 784 # 28*28的灰度图 n_output = 10 # 完成一个10分类的操作 weights = { #'权重参数': tf.Variable(tf.高期([feature的H, feature的W, 当前feature连接的输入的深度, 最终想得到…
1.LeNet-5模型简介 LeNet-5 模型是 Yann LeCun 教授于 1998 年在论文 Gradient-based learning applied to document         recognitionr [1] 中提出的,它是第一个成功应用于数字识别问题的卷积神经网络.在 MNIST 数据集上, LeNet-5 模型可以达到大约 99.2%的正确率. 2.LeNet-5模型结构 LeNet-5 模型总共有 7 层 ,下图展示了 LeNet-5 模型的架构 . 下面总结…
初学tensorflow,参考了以下几篇博客: soft模型 tensorflow构建全连接神经网络 tensorflow构建卷积神经网络 tensorflow构建卷积神经网络 tensorflow构建CNN[待学习] 全连接+各种优化[待学习] BN层[待学习] 先解释以下MNIST数据集,训练数据集有55,000 条,即X为55,000 * 784的矩阵,那么Y为55,000 * 10的矩阵,每个图片是28像素*28像素,带有标签,Y为该图片的真实数字,即标签,每个图片10个数字,1所在位置…
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/weixin_42279044/article/details/101053719 关于数据格式 默认日常描述图片尺寸,采用[w,h]的形式,比如一张图片是1280*800就是指宽w=1280, 高h=800. 因此在cfg中所指定img scale = [1333, 800]就是指w=1333, h=800 从而转入计算机后,要从w,h变成…
1.AlexNet 模型简介 由于受到计算机性能的影响,虽然LeNet在图像分类中取得了较好的成绩,但是并没有引起很多的关注. 知道2012年,Alex等人提出的AlexNet网络在ImageNet大赛上以远超第二名的成绩夺冠,卷积神经网络乃至深度学习重新引起了广泛的关注. 2.AlexNet 模型特点 AlexNet是在LeNet的基础上加深了网络的结构,学习更丰富更高维的图像特征.AlexNet的特点:1)更深的网络结构2)使用层叠的卷积层,即卷积层+卷积层+池化层来提取图像的特征3)使用D…
caffe在 .\examples\mnist文件夹下有一个 lenet.prototxt文件,这个文件定义了一个广义的LetNet-5模型,对这个模型文件逐段分解一下. name: "LeNet" //网络的名称是LeNet layer { //定义一个网络层 name: "data" //定义该网络层的名称为 data type: "Input" //定义网络层的类型是 输入层 top: "data" //定义网络层的输出…
1.VGGNet 模型简介 VGG Net由牛津大学的视觉几何组(Visual Geometry Group)和 Google DeepMind公司的研究员一起研发的的深度卷积神经网络,在 ILSVRC 2014 上取得了第二名的成绩,将 Top-5错误率降到7.3%.它主要的贡献是展示出网络的深度(depth)是算法优良性能的关键部分.目前使用比较多的网络结构主要有ResNet(152-1000层),GooleNet(22层),VGGNet(19层),大多数模型都是基于这几个模型上改进,采用新…
1.GoogLeNet 模型简介 GoogLeNet 是2014年Christian Szegedy提出的一种全新的深度学习结构,该模型获得了ImageNet挑战赛的冠军. 2.GoogLeNet 模型的提出 1)在这之前的AlexNet.VGG等结构都是通过增大网络的深度(层数)来获得更好的训练效果,但层数的增加会带来很多负作用,比如过拟合.梯度消失.梯度爆炸等.2)解决这些问题的方法当然就是在增加网络深度和宽度的同时减少参数,为了减少参数,自然就想到将全连接变成稀疏连接.但是在实现上,全连接…