python_进程池以及线程池】的更多相关文章

需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加锁吧那么我们就用QUEUE,这样还解决了自动加锁的问题由Queue延伸出的一个点也非常重要的概念.以后写程序也会用到这个思想.就是生产者与消费者问题 一.Python标准模块--concurrent.futures(并发未来) concurent.future模块需要了解的1.concurent.f…
今日内容: 1.GIL 全局解释器锁 2.Cpython解释器并发效率验证 3.线程互斥锁和GIL对比 4.进程池与线程池 一.全局解释器锁 1.GIL:全局解释器锁 GIL本质就是一把互斥锁,是夹在解释器身上的 统一进程内的所有线程都需要先抢到GIL锁,才能执行pai解释器代码 2.GIL优缺点: 优点: 保证Cpython解释器内存管理的线程安全 缺点: 同一进程内所有的线程同一时刻只能有一个执行, 也就是锁Cpython解释器多线程无法实现真正的并行 from threading impo…
需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加锁吧那么我们就用QUEUE,这样还解决了自动加锁的问题由Queue延伸出的一个点也非常重要的概念.以后写程序也会用到这个思想.就是生产者与消费者问题 一.Python标准模块--concurrent.futures(并发未来) concurent.future模块需要了解的1.concurent.f…
concurrent.futures:是关于进程池 和 线程池 的 官方文档 https://docs.python.org/dev/library/concurrent.futures.html 现讲进程池把,看文档你会发现,两种池的用法几乎是一样的 一段代码来了: from concurrent.futures import ProcessPoolExecutor impor time,os def work(n): print('%s is running'% os.getpid()) p…
1.什么是GIL? 官方解释: ''' In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from executing Python bytecodes at once. This lock is necessary mainly because CPython’s memory management is not thread-safe. (Howe…
进程池 """ python自带的进程池 """ from multiprocessing import Pool from time import sleep def apply(*args, **kwargs): print(args, kwargs) sleep(3) return 'ok' if __name__ == '__main__': pool = Pool(3) result = pool.apply_async(apply,…
本文转载于:https://blog.csdn.net/ywcpig/article/details/52557080 内存池 平常我们使用new.malloc在堆区申请一块内存,但由于每次申请的内存大小不一样就会产生很多内存碎片,造成不好管理与浪费的情况. 内存池则是在真正使用内存之前,先申请分配一定数量的.大小相等(一般情况下)的内存块留作备用.当有新的内存需求时,就从内存池中分出一部分内存块,若内存块不够再继续申请新的内存.这样做的一个显著优点是尽量避免了内存碎片,使得内存分配效率得到提升…
进程池与线程池 在刚开始学多进程或多线程时,我们迫不及待地基于多进程或多线程实现并发的套接字通信,然而这种实现方式的致命缺陷是:服务的开启的进程数或线程数都会随着并发的客户端数目地增多而增多, 这会对服务端主机带来巨大的压力,甚至于不堪重负而瘫痪,于是我们必须对服务端开启的进程数或线程数加以控制,让机器在一个自己可以承受的范围内运行,这就是进程池或线程池的用途, 例如进程池,就是用来存放进程的池子,本质还是基于多进程,只不过是对开启进程的数目加上了限制 Python--concurrent.fu…
一.进程池与线程池介绍 池子使用来限制并发的任务数目,限制我们的计算机在一个自己可承受的范围内去并发地执行任务 当并发的任务数远远超过了计算机的承受能力时,即无法一次性开启过多的进程数或线程数时就应该用池的概念将开启的进程数或线程数 池子内什么时候装进程:并发的任务属于计算密集型池子内什么时候装线程:并发的任务属于IO密集型 不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你…
queue 英 /kjuː/ 美 /kju/ 队列 1.class queue.Queue(maxsize=0) #队列:先进先出 import queue q=queue.Queue() q.put('first') q.put('second') q.put('third') print(q.get()) print(q.get()) print(q.get()) ''' 结果(先进先出): first second third ''' 2.class queue.LifoQueue(max…
GIL 1.什么是GIL(这是Cpython解释器) GIL本质就是一把互斥锁,既然是互斥锁,原理都是一样的,都是让多个并发线程同一时间只能有一个执行 即:有了GIL的存在,同一进程内的多个线程同一时刻只能有一个在运行,意味着Cpython中一个进程下的多个线程无法实现并行,所以就无法利用多核优势,但不影响并发的实现 GIL可以被比喻成执行权限,同一进程下的所有线程,想要执行都需要先抢执行权限 2.为何要有GIL 因为Cpython解释器自带垃圾回收机制不是线程安全的 3.如何用 GIL vs…
一.进程池与线程池 python标准模块concurrent.futures(并发未来) 1.concurrent.futures模块是用来创建并行的任务,提供了更高级别的接口,为了异步执行调用 2.concurrent.futures这个模块使用方便,接口都已封装完整 3.concurrent.futures模块即可以实现进程池也可以实现线程池 4.使用concurrent.futures模块导入进程池和线程池,如下: from concurrent.futures import Thread…
1.定时器 指定n秒后,执行任务 from threading import Timer,current_thread import os def hello(): print("%s hello, world"%os.getpid()) print("%s hello, world"%current_thread().name) t = Timer(3, hello) t.start() # after 1 seconds, "hello, world&…
一:进程池与线程池 提交任务的两种方式: 1.同步调用:提交完一个任务之后,就在原地等待,等任务完完整整地运行完毕拿到结果后,再执行下一行代码,会导致任务是串行执行 2.异步调用:提交完一个任务之后,不是原地等待,而是直接执行下一行代码,会导致任务是并发执行的,结果future对象会在任务运行完毕后自动传给回调函数 from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor import time, random,…
官方介绍 ''' 定义: In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from executing Python bytecodes at once. This lock is necessary mainly because CPython’s memory management is not thread-safe. (However, si…
进程池和线程池 开进程开线程都需要消耗资源,只不过两者比较的情况线程消耗的资源比较少 在计算机能够承受范围之内最大限度的利用计算机 什么是池? ​ 在保证计算机硬件安全的情况下最大限度地利用计算机 ​ 池其实是降低了程序的运行效率 但是保证了计算机硬件的安全 ​ (硬件的发展跟不上软件的速度) 线程池进程池 括号内可以传参数指定线程池内的线程个数 也可以不传 不传默认是当前cpu核数*5 ​ 提交任务的方式: 同步:提交任务之后,原地等待任务的结果,期间不做任何事 异步:提交任务后,不等待任务的…
目录 1. 死锁与递归锁 2. 信号量Semaphor 3. GIL全局解释器锁:(Cpython) 4. IO.计算密集型对比 4.1 计算密集型: 4.2 IO密集型 5. GIL与Lock锁的区别 6. 多线程实现socket通信 7. 进程池.线程池 1. 死锁与递归锁 死锁:两个或者两个以上的进程或者线程在执行过程中,因争夺资源而造成的一种等待现象,称为死锁现象. 递归锁可以解决死锁现象. 递归锁有一个计数的功能,原数字为0,锁一次计数+1,释放一次,计数-1:只要数字不为0,其他线程…
一.进程池. 当并发的任务数量远远大于计算机所能承受的范围,即无法一次性开启过多的任务数量就应该考虑去 限制进程数或线程数,从而保证服务器不会因超载而瘫痪.这时候就出现了进程池和线程池. 二.concurrent.futures模块介绍 concurrent.futures模块提供了高度封装的异步调用接口 ThreadPoolExecutor:线程池,提供异步调用 ProcessPoolExecutor:进程池,提供异步调用 Both implement the same interface,…
为什么会进行池化? 一切都是为了效率,每次开启进程都会分配一个属于这个进程独立的内存空间,开启进程过多会占用大量内存,系统调度也会很慢,我们不能无限的开启进程. 进程池原来大概如下图 假设有100个任务 ,如果不使用进程池就需要创建100个进程.但是使用进程池假设进程池里有25个进程,那么100个任务 每个都从进程池分配一个进程执行,如果进程池为空就会等待别的任务完成归还进程再分配进程执行任务. 更高级的进程池,会根据任务数量自动收缩和扩充进程池大小,不过python暂时不具备.我猜的原因是因为…
目录 Event事件 进程池与线程池 多线程爬取梨视频 协程 协程目的 gevent TCP服务端socket套接字实现协程 Event事件 用来控制线程的执行 出现e.wait(),就会把这个线程设置为False,就不能执行这个任务: 只要有一个线程出现e.set(),就会告诉Event对象,把有e.wait的用户全部改为True,剩余的任务就会立马去执行.由一些线程去控制另一些线程,中间通过Event. from threading import Event from threading i…
一.进程池和线程池 当被操作对象数目不大时,我们可以手动创建几个进程和线程,十几个几十个还好,但是如果有上百个上千个.手动操作麻烦而且电脑硬件跟不上,可以会崩溃,此时进程池.线程池的功效就能发挥了.我们可以通过维护一个进程池.线程池来控制进程数目和线程数目.在保证计算机硬件安全的情况下最大限度的利用计算机,池其实是降低了程序的运行效率,但是保证了计算机硬件的安全. 注意点:在使用进程池.线程池,Pool可以提供指定数量的进程,线程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么…
一.问题描述 在Django视图函数中,导入 gevent 模块 import gevent from gevent import monkey; monkey.patch_all() from gevent.pool import Pool 启动Django报错: MonkeyPatchWarning: Monkey-patching outside the main native thread. Some APIs will not be available. Expect a KeyErr…
9.11 进程池与线程池 池子使用来限制并发的任务数目,限制我们的计算机在一个自己可承受的范围内去并发地执行任务 池子内什么时候装进程:并发的任务属于计算密集型 池子内什么时候装线程:并发的任务属于IO密集型 进程池: from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor import time,os,random ​ def task(x): print('%s 接客' %os.getpid()) time.…
GIL锁定义 GIL锁:Global Interpreter Lock  全局解释器 本质上是一把互斥锁 官方解释: 在CPython中,这个全局解释器锁,也称为GIL,是一个互斥锁,防止多个线程在同一时间执行Python字节码, 这个锁是非常重要的,因为CPython的内存管理是非线程安全的,也有很多其他的特性依赖于GIL(比如有些 东西是依赖这个GIL写好的,要替换成本很高),所以即使它影响了程序的效率,也无法直接将其去除. 需要知道的是,解释器并不只有CPython,还有PyPy,Jpyt…
1.GIL 定义: GIL:全局解释器锁(Global Interpreter Lock) 全局解释器锁是一种互斥锁,其锁住的代码是全局解释器中的代码 为什么需要全局解释器锁 在我们进行代码编写时,实际上我们只是编写了符合python语法的文本文件,如果我们的代码不交给解释器进行解释,那么我们的代码就是一堆字符串,只有在我们将代码交给解释器进行解释时,解释器把我们的代码进行一行一行的解释,解释成一堆二进制,此时再交给cpu进行执行,执行后电脑就会按照我们的代码执行相应的操作. 在python中,…
一 进程池与线程池 1.为什么需要进程池和线程池 基于多进程或多线程实现并发的套接字通信,然而这种实现方式的致命缺陷是: 服务端的程序运行在一台机器身上,一台机器性能是有极限的,不能无限开线程 服务的开启的进程数或线程数都会随着并发的客户端数目地增多而增多,这会对服务端主机带来巨大的压力,甚至于不堪重负而瘫痪,于是我们必须对服务端开启的进程数或线程数加以控制,让机器在一个自己可以承受的范围内运行 2.线程池和进程池作用 这就是进程池或线程池的用途,例如进程池,就是用来存放进程的池子,本质还是基于…
需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加锁吧那么我们就用QUEUE,这样还解决了自动加锁的问题由Queue延伸出的一个点也非常重要的概念.以后写程序也会用到这个思想.就是生产者与消费者问题 一.Python标准模块--concurrent.futures(并发未来) concurent.future模块需要了解的1.concurent.f…
python3下multiprocessing.threading和gevent性能对比----暨进程池.线程池和协程池性能对比   标签: python3 / 线程池 / multiprocessing / gevent / threading 30004 目前计算机程序一般会遇到两类I/O:硬盘I/O和网络I/O.我就针对网络I/O的场景分析下python3下进程.线程.协程效率的对比.进程采用multiprocessing.Pool进程池,线程是自己封装的进程池,协程采用gevent的库.…
Python中的进程池与线程池 引入进程池与线程池 使用ProcessPoolExecutor进程池,使用ThreadPoolExecutor 使用shutdown 使用submit同步调用 使用submit异步调用 异步+回调函数 并发实现套接字通信 引入进程池 在学习线程池之前,我们先看一个例子 1 # from multiprocessing import Process 2 # import time 3 # 4 # def task(name): 5 # print('name',na…
引入进程池与线程池 使用ProcessPoolExecutor进程池,使用ThreadPoolExecutor 使用shutdown 使用submit同步调用 使用submit异步调用 异步+回调函数 并发实现套接字通信 引入进程池 在学习线程池之前,我们先看一个例子 # from multiprocessing import Process # import time # # def task(name): # print('name',name) # time.sleep(1) # if _…