2. RDD编程】的更多相关文章

Spark菜鸟学习营Day3 RDD编程进阶 RDD代码简化 对于昨天练习的代码,我们可以从几个方面来简化: 使用fluent风格写法,可以减少对于中间变量的定义. 使用lambda表示式来替换对象写法,可以使用到类型推断功能,减少对于类型的定义. 优化后代码如下: return this.getInputRDD(PracticePojo.class) .mapToPair( practicePojo -> new Tuple2<>(practicePojo.getSecurityId(…
Spark菜鸟学习营Day1 从Java到RDD编程 菜鸟训练营主要的目标是帮助大家从零开始,初步掌握Spark程序的开发. Spark的编程模型是一步一步发展过来的,今天主要带大家走一下这段路,让我们从一段最最基础的Java代码开始. 问题:Java有哪些数据结构 大致有如下几种,其中List与Map是最重要的: List Map Set Array Heap Stack Queue Tree 练习:构造一个1-5的List,把他们打印出来 写法1 List<Integer> input =…
通过一个简单的单词计数的例子来开始介绍RDD编程. import org.apache.spark.{SparkConf, SparkContext} object word { def main(args: Array[String]): Unit = { val conf = new SparkConf().setMaster("local").setAppName("word") val sc = new SparkContext(conf) val inpu…
Spark编程模型(RDD编程模型) 下图给出了rdd 编程模型,并将下例中用 到的四个算子映射到四种算子类型.spark 程序工作在两个空间中:spark rdd空间和 scala原生数据空间.在原生数据空间里, 数据表现为标量(即scala基本类型,用橘 色小方块表示).集合类型(蓝色虚线 框) 和持久存储(红色圆柱).…
02.体验Spark shell下RDD编程 1.Spark RDD介绍 RDD是Resilient Distributed Dataset,中文翻译是弹性分布式数据集.该类是Spark是核心类成员之一,是贯穿Spark编程的始终.初期阶段,我们可以把RDD看成是Java中的集合就可以了,在后面的章节中会详细讲解RDD的内部结构和工作原理. 2.Spark-shell下实现对本地文件的单词统计 2.1思路 word count是大数据学习的经典案例,很多功能实现都可以归结为是word count…
Spark学习之RDD编程(2) 1. Spark中的RDD是一个不可变的分布式对象集合. 2. 在Spark中数据的操作不外乎创建RDD.转化已有的RDD以及调用RDD操作进行求值. 3. 创建RDD:1)读取一个外部数据集2)在驱动器程序里分发驱动器程序中的对象集合. 4. RDD支持的操作: 1)转换操作,由一个RDD生成一个新的RDD. 2)行动操作,对RDD进行计算结果,并把结果返回到驱动器程序中,或者把结果存储到外部存储系统(如HDFS). 5. Spark程序或者shell会话都会…
一.RDD编程基础 1.创建 spark采用textFile()方法来从文件系统中加载数据创建RDD,该方法把文件的URL作为参数,这个URL可以是: 本地文件系统的地址 分布式文件系统HDFS的地址 从云端加载数据,比如亚马逊的云端存储S3 (1)从本地文件系统中加载数据创建RDD (2)从分布式文件系统HDFS中加载数据 上面三条等价的前提是当前登录linux系统的用户名必须是Hadoop用户,这样当执行括号里给的文本文件名称word.txt时,系统默认去当前登录Ubuntu系统的用户在HD…
2.1 编程模型 在Spark中,RDD被表示为对象,通过对象上的方法调用来对RDD进行转换.经过一系列的transformations定义RDD之后,就可以调用actions触发RDD的计算,action可以是向应用程序返回结果(count, collect等),或者是向存储系统保存数据(saveAsTextFile等).在Spark中,只有遇到action,才会执行RDD的计算(即延迟计算),这样在运行时可以通过管道的方式传输多个转换 要使用Spark,开发者需要编写一个Driver程序,它…
一.实验目的 (1)熟悉 Spark 的 RDD 基本操作及键值对操作: (2)熟悉使用 RDD 编程解决实际具体问题的方法. 二.实验平台 操作系统:centos6.4 Spark 版本:1.5.0 三.实验内容 实验一: 1.spark-shell 交互式编程 请到本教程官网的“下载专区”的“数据集”中下载 chapter5-data1.txt,该数据集包含 了某大学计算机系的成绩,数据格式如下所示: 首先开始我们的第一步,打开linux系统中的终端. 请根据给定的实验数据,在 spark-…
第2章 RDD编程(2.3) 2.3 TransFormation 基本RDD Pair类型RDD (伪集合操作  交.并.补.笛卡尔积都支持) 2.3.1 map(func) 返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成 package com.diyo.funtion import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} /** * map(func) *…
第2章 RDD编程 2.1 编程模型 在Spark中,RDD被表示为对象,通过对象上的方法调用来对RDD进行转换.经过一系列的transformations定义RDD之后,就可以调用actions触发RDD的计算,action可以是向应用程序返回结果(count, collect等),或者是向存储系统保存数据(saveAsTextFile等).在Spark中,只有遇到action,才会执行RDD的计算(即延迟计算),这样在运行时可以通过管道的方式传输多个转换. 要使用Spark,开发者需要编写一…
目录 一.实验目的 二.实验平台 三.实验内容.要求 1.pyspark交互式编程 2.编写独立应用程序实现数据去重 3.编写独立应用程序实现求平均值问题 四.实验过程 (一)pyspark交互式编程 (二)编写独立应用程序实现数据去重 (三)编写独立应用程序实现求平均值问题 一.实验目的 1.熟悉Spark的RDD基本操作及键值对操作: 2.熟悉使用RDD编程解决实际具体问题的方法. 二.实验平台 操作系统:Ubuntu16.04 Spark版本:2.4.0 Python版本:3.4.3 三.…
Spark-RDD编程常用转换算子代码实例 Spark rdd 常用 Transformation 实例: 1.def map[U: ClassTag](f: T => U): RDD[U]   将函数应用于RDD的每一元素,并返回一个新的RDD package top.ruandb import org.apache.spark.{SparkConf, SparkContext} object RddTest extends App{ val sparkConf = new SparkConf…
本篇主要是记录自己在中解决RDD编程性能问题中查阅的论文博客,为我认为写的不错的建立索引方便查阅,我的总结会另立他篇 1)通过分区(Partitioning)提高spark性能https://blog.csdn.net/qq_32649581/article/details/83029852 2)DataFrame的repartition.partitionBy.coalesce区别 https://blog.csdn.net/u010720408/article/details/9022946…
---------------- 本节内容 1.RDD的工作流程 2.WordCount解说  · shell版本WordCount  · java版本WordCount ---------------- 一.RDD工作流程 1. RDD是spark特有的数据模型,谈到RDD就会提到什么弹性分布式数据集,什么有向无环图,本文暂时不去展开这些高深概念,在阅读本文时候,大家可以就把RDD当作一个数组,这样的理解对我们学习RDD的API是非常有帮助的.本文所有示例代码都是使用scala语言编写的.RD…
--------------------- 本节内容: · Spark转换 RDD操作实例 · Spark行动 RDD操作实例 · 参考资料 --------------------- 关于学习编程方式的,每个人都有自己的方式.对我个人来说,最好的方法还是多动手写demo,要多写代码,才能理解的更加深刻,本节以例子的形式讲解各个Spark RDD的使用方法和注意事项,本文一共讲解了20个RDD的使用demo. 一.Spark转换 RDD操作实例 RDD转换操作返回的是RDD,而行动操作返回的是其…
一.求top值 任务描述:求出多个文件中数值的最大.最小值 二.求最大最小值 任务描述:求出多个文件中数值的最大.最小值 解题思路:通过一个人造的key,让所有的值都成为“key”的value-list,然后对value-list进行遍历,用两个变量求出最大最小值. 代码如下: import org.apache.spark.{SparkConf, SparkContext} object MaxAndMin { def main(args: Array[String]): Unit = { v…
一.文件数据读写 1.本地文件系统的数据读写 可以采用多种方式创建Pair RDD,其中一种主要方式是使用map()函数来实现 惰性机制,即使输入了错误的语句spark-shell也不会马上报错. (1)读 给出路径名称,TextFile会把路径下面的所有文件都读进来,生成一个RDD (2)写 当只有一个分区时,单线程才会出现part-0000 如果分了两个分区,写完之后会生成part-0000和part-0001 2.分布式文件系统HDFS的数据读写 (1)读 (2)写 3.JSON文件的数据…
一.键值对RDD的创建 1.从文件中加载 2.通过并行集合(数组)创建RDD 二.常用的键值对RDD转换操作 1.reduceByKey(func) 功能:使用func函数合并具有相同键的值 2.groupByKey() 功能:对具有相同键的值进行分组 3.keys 4.values 5.sortByKey() 默认按升序排序,括号里写false为降序排序 6.mapValues(func) 功能:对键值对RDD中的每个value都应用一个函数,key不会发生变化. 7.join 功能:把几个R…
1.今天把Spark编程第三个实验的Scala独立程序编程写完了.使用 sbt 打包 Scala 程序,然后提交到Spark运行. 2.完成了实验四的第一项 (1)该系总共有多少学生:   map(t => t.split(",")(0))表示:lines这个RDD中每个元素被split()函数拆分成3个字符串,保存到数组中,然后,把数组中的第1个元素(即学生名字字段的值)取出来放到新的RDD中. distinct()表示:去重操作,即把重复的学生名字去掉,只保留一个. coun…
1.spark-shell交互式编程 (1) 该系总共有多少学生 scala> val lines = sc.textFile("file:///usr/local/spark/sparklab/Data01.txt") lines: org.apache.spark.rdd.RDD[String] = file:///usr/local/spark/sparklab/Data01.txt MapPartitionsRDD[4] at textFile at <consol…
本篇博客中的操作都在 ./bin/pyspark 中执行. RDD,即弹性分布式数据集(Resilient Distributed Dataset),是Spark对数据的核心抽象.RDD是分布式元素的集合,对手的所有操作都可以概括为: 创建RDD 转化已有RDD 调用RDD操作进行求值 在这些操作中,Spark会自动将RDD中的数据分发的集群上,并将操作自动化执行. 每个RDD都被分为多个分区,这些分区运行在集群中的不同节点上. Get Started 用户可以: 读取一个外部数据集 或者使用对…
创建RDD有两种方式:①读取外部数据集,lines=sc.textFile("README.md").②对一个集合进行并行化,lines=sc.parallelize(["zhangsan","lisi"]). 2.从http://files.grouplens.org/datasets/movielens/ml-100k.zip下载分析数据.到其目录中查看有几个重要的文件u.user(用户属性文件),u.item(电影元数据),u.data(用…
1.RDD介绍:     RDD,弹性分布式数据集,即分布式的元素集合.在spark中,对所有数据的操作不外乎是创建RDD.转化已有的RDD以及调用RDD操作进行求值.在这一切的背后,Spark会自动将RDD中的数据分发到集群中,并将操作并行化.     Spark中的RDD就是一个不可变的分布式对象集合.每个RDD都被分为多个分区,这些分区运行在集群中的不同节点上.RDD可以包含Python,Java,Scala中任意类型的对象,甚至可以包含用户自定义的对象.     用户可以使用两种方法创建…
1.RDD介绍:     RDD,弹性分布式数据集,即分布式的元素集合.在spark中,对所有数据的操作不外乎是创建RDD.转化已有的RDD以及调用RDD操作进行求值.在这一切的背后,Spark会自动将RDD中的数据分发到集群中,并将操作并行化.     Spark中的RDD就是一个不可变的分布式对象集合.每个RDD都被分为多个分区,这些分区运行在集群中的不同节点上.RDD可以包含Python,Java,Scala中任意类型的对象,甚至可以包含用户自定义的对象.     用户可以使用两种方法创建…
一句话说,在Spark中对数据的操作其实就是对RDD的操作,而对RDD的操作不外乎创建.转换.调用求值. 什么是RDD RDD(Resilient Distributed Dataset),弹性分布式数据集. 它定义了如何在集群的每个节点上操作数据的一系列命令,而不是指真实的数据,Spark通过RDD可以对每个节点的多个分区进行并行的数据操作. 之所以称弹性,是因为其有高容错性.默认情况下,Spark会在每一次行动操作后进行RDD重计算,如想在多个行动操作中使用RDD,可以将其缓存(以分区的方式…
Spark 对数据的核心抽象——弹性分布式数据集(Resilient Distributed Dataset,简称 RDD).RDD 其实就是分布式的元素集合.在 Spark 中,对数据的所有操作不外乎创建 RDD.转化已有 RDD 以及调用 RDD 操作进行求值.而在这一切背后,Spark 会自动将RDD 中的数据分发到集群上,并将操作并行化执行. 一.RDD基础 Spark 中的 RDD 就是一个不可变的分布式对象集合.每个 RDD 都被分为多个分区,这些分区运行在集群中的不同节点上.RDD…
--------------------- 本节内容: · 键值对RDD出现背景 · 键值对RDD转化操作实例 · 键值对RDD行动操作实例 · 键值对RDD数据分区 · 参考资料 --------------------- 虽然大部分Spark的RDD操作都支持所有种类的对象,但是有少部分特殊的操作只能作用于键值对类型的RDD.这类操作中最常见的就是分布的shuffle操作,比如将元素通过键来分组或聚集计算.因此,键值对RDD也是很多程序不可缺失的一部分. 一.键值对RDD出现背景 mapre…
1.RDD——弹性分布式数据集(Resilient Distributed Dataset) RDD是一个分布式的元素集合,在Spark中,对数据的操作就是创建RDD.转换已有的RDD和调用RDD操作进行求值. Spark 中的 RDD 就是一个不可变的分布式对象集合.每个 RDD 都被分为多个分区,这些分区运行在集群中的不同节点上. object WordCount { def main(args: Array[String]) { val inputFile = "file:///home/…
Spark中提供了通用接口来抽象每个RDD,这些接口包括: 1.分区信息 2.依赖关系 3.函数,基于父RDD计算方法 4.划分策略和数据位置的元数据…