ROS tf-深入Time和TF】的更多相关文章

这个地方一开始是迷糊的,写代码做比较分析,总结出直觉上的经验. 某人若想看精准的解释,移步这个网址(http://blog.csdn.net/fireflychh/article/details/73743849),但我觉得直觉上的经验更有用,如下: 直觉上的经验: 一件确定的事: padding 无论取 'SAME' 还是取 'VALID', 它在 conv2d 和 max_pool 上的表现是一致的; padding = 'SAME' 时,输出并不一定和原图size一致,但会保证覆盖原图所有…
1. tf.nn.moments(x, axes=[0, 1, 2])  # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的feature_map, axes=[0, 1, 2] 对三个维度求平均,即每一个feature_map都获得一个平均值和标准差 2.with tf.control_dependencies([train_mean, train_var]): 即执行with里面的操作时,会先执行train_mean 和…
# tensorflow中的两种定义scope(命名变量)的方式tf.get_variable和tf.Variable.Tensorflow当中有两种途径生成变量 variable import tensorflow as tf #T1法 tf.name_scope() with tf.name_scope("a_name_scope"): initializer = tf.constant_initializer(value=1) #定义常量 var1 = tf.get_variab…
1. 使用tf.random_normal([2, 3], mean=-1, stddev=4) 创建一个正态分布的随机数 参数说明:[2, 3]表示随机数的维度,mean表示平均值,stddev表示标准差 代码:生成一个随机分布的值 #1. 创建一个正态分布的随机数 sess = tf.Session() x = tf.random_normal([2, 3], mean=-1, stddev=4) print(sess.run(x)) 2. np.random.shuffle(y) # 对数…
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名. 示例图如下: 图片来至于 https://zhuanlan.zhihu.…
1. tf.add(a, b) 与 a+b 在神经网络前向传播的过程中,经常可见如下两种形式的代码: tf.add(tf.matmul(x, w), b) tf.matmul(x, w) + b 简而言之,就是 tf.add(a, b) 与 a + b二者的区别,类似的也有,tf.assign 与 =(赋值运算符)的差异. 在计算精度上,二者并没有差别.运算符重载的形式a+b,会在内部转换为,a.__add__(b),而a.__add__(b)会再一次地映射为tf.add,在 math_ops.…
tensorflow中有很多需要变量共享的场合,比如在多个GPU上训练网络时网络参数和训练数据就需要共享. tf通过 tf.get_variable() 可以建立或者获取一个共享的变量. tf.get_variable函数的作用从tf的注释里就可以看出来-- 'Gets an existing variable with this name or create a new one'. 与 tf.get_variable 函数相对的还有一个 tf.Variable 函数,两者的区别是: tf.Va…
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名. 示例图如下: 图片来至于 https://zhuanlan.zhihu.…
1.  tf.split(3, group, input)  # 拆分函数    3 表示的是在第三个维度上, group表示拆分的次数, input 表示输入的值 import tensorflow as tf import numpy as np x = [[1, 2], [3, 4]] Y = tf.split(axis=1, num_or_size_splits=2, value=x) sess = tf.Session() for y in Y: print(sess.run(y))…
In order to train our model, we need to define what it means for the model to be good. Well, actually, in machine learning we typically define what it means for a model to be bad. We call this the cost, or the loss, and it represents how far off our…