Motivation: 阈值分割的阈值并没有通过模型训练学出来,而是凭借主观经验设置,本文通过与背景得分比较提取对应的proposal,不用阈值的另一篇文章是Shou Zheng的AutoLoc,通过伪标签训练回归网络 阈值分割缺点:低阈值会把多个动作实例ground-truth合并成一个动作实例,高阈值会将一个动作实例ground-truth分割成多个动作实例 忽略背景建模: 过去的方法没有对视频的背景建模无法利用动作和背景之间的先验知识 Feature Transformation Modu…
http://openaccess.thecvf.com/content_cvpr_2017/papers/Jie_Deep_Self-Taught_Learning_CVPR_2017_paper.pdf Deep Self-Taught Learning for Weakly Supervised Object Localization. Zequn Jie, Yunchao Wei, Xiaojie Jin, Jiashi Feng, Wei Liu 亮点 监督学习中用难例挖掘,弱监督中靠…
Adaptive Threshold 1. Otsu's Binarization: Using a discriminant analysis to partition the image into 2 classes C0 = {0, 1, 2, ..., t} and C1 = {t+1, t+2, ..., L-1} at which is the total number of the gray levels in image; (1). Let n be the total numb…
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #042eee } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333 } p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px "…
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #042eee } p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "…
参考文献:Yancheng Bai and Ming Tang. Robust Tracking via Weakly Supervised Ranking SVM Abstract 通常的算法:utilize the object information contained in the current and previous frames to construct the object appearance model and locate the object with the mode…
https://blog.csdn.net/qq_32417287/article/details/80102466 abstract introduction method overview Deep architecture for place recognition NetVLAD: A Generalized VLAD layer (fVLADfVLAD f_{VLAD}) Max pooling (fmax) Learning from Time Machine data Experi…
记笔记目的:刻意地.有意地整理其思路,综合对比,以求借鉴.他山之石,可以攻玉. <Convolutional Simplex Projection Network for Weakly Supervised Semantic Segmentation>-20180724,一篇来自德国波恩大学与锡根大学的paper. 论文code: https://github.com/briqr/CSPN Abstract The method introduces a novel layer which a…
Two-Stream Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition 摘要 基于骨架的动作识别因为其以时空结合图(spatiotemporal graph)的形式模拟了人体骨骼而取得了显著的效果. 在现有的基于图的方法中,图的拓扑结构是手动设置的,而且在所有层以及输入样本中是固定不变的.这样的方法在用在有层级CNN和不同输入样本的动作识别中不是最佳的. 而且骨架中的具有更多细节和判别式信息二级结…
新在ICCV上发的弱监督物体检测文章,偷偷高兴一下,贴出我的poster,最近有点忙,话不多说,欢迎交流- https://arxiv.org/pdf/1904.00551.pdf http://openaccess.thecvf.com/content_ICCV_2019/papers/Li_Weakly_Supervised_Object_Detection_With_Segmentation_Collaboration_ICCV_2019_paper.pdf @inproceedings{…
by 南大周志华 摘要 监督学习技术通过学习大量训练数据来构建预测模型,其中每个训练样本都有其对应的真值输出.尽管现有的技术已经取得了巨大的成功,但值得注意的是,由于数据标注过程的高成本,很多任务很难获得如全部真值标签这样的强监督信息.因此,能够使用弱监督的机器学习技术是可取的.本文综述了弱监督学习的一些研究进展,主要关注三种弱监督类型:不完全监督,即只有一部分样本有标签:不确切监督,即训练样本只有粗粒度的标签:以及不准确监督,即给定的标签不一定总是真值. 关键词:机器学习,弱监督学习,监督学习…
一.论文提出的方法: 使用进入ICU前48h的用药特征作为预测因子预测重症监护患者的死亡率和ICU住院时间. 用到了联邦学习,自编码器,k-means聚类算法,社区检测. 数据集:从50家患者人数超过600人的医院,每个医院抽取560名患者形成最终的28000例数据集,20000作为训练集,8000作为测试集. 二.具体实现: 1.每个医院各自训练自编码器重构药物特征 2. 每个医院用将各自data转换为向量表示,然后将所有医院的平均值返回给server 3. Server使用k-means算法…
MIL陷入局部最优,检测到局部,无法完整的检测到物体.将instance划分为空间相关和类别相关的子集.在这些子集中定义一系列平滑的损失近似代替原损失函数,优化这些平滑损失. C-MIL learns instance subsets, where the instances are spatially related, i.e., overlapping with each other, and class related, i.e., having similar object class…
Motivation: The lack of transparency of the deep  learning models creates key barriers to establishing trusts to the model or effectively troubleshooting classification errors Common methods on non-security applications: forward propagation / back pr…
Link of the Paper: https://arxiv.org/abs/1705.03122 Motivation: Compared to recurrent layers, convolutions create representations for fixed size contexts, however, the effective context size of the network can easily be made larger by stacking severa…
Link of the Paper: https://arxiv.org/abs/1806.06422 Innovations: The authors propose a novel learning based discriminative evaluation metric that is directly trained to distinguish between human and machine-generated captions. They train an automatic…
Link of the Paper: https://arxiv.org/pdf/1504.06692.pdf Innovations: The authors propose the Novel Visual Concept learning from Sentences ( NVCS ) task. In this task, methods need to learn novel concepts from sentence descriptions of a few images. Th…
来源:NIPS 2013 作者:DeepMind 理解基础: 增强学习基本知识 深度学习 特别是卷积神经网络的基本知识 创新点:第一个将深度学习模型与增强学习结合在一起从而成功地直接从高维的输入学习控制策略 详细是将卷积神经网络和Q Learning结合在一起.卷积神经网络的输入是原始图像数据(作为状态)输出则为每一个动作相应的价值Value Function来预计未来的反馈Reward 实验成果:使用同一个网络学习玩Atari 2600 游戏.在測试的7个游戏中6个超过了以往的方法而且好几个超…
Learning while Reading 不限于具体的书,只限于知识的宽度 这个系列集合了一周所学所看的精华,它们往往来自不只一本书 我们之所以将自然界分类,组织成各种概念,并按其分类,主要是因为我们是整个口语交流社会共同遵守的协定的参与者,这个协定以语言的形式固定下来.除非赞成这个协定中规定的有关语言信息的组织和分类,否则我们根本无法交谈. ——Benjamin Lee Whorf Learning and Asking 为什么选择面向对象? 机器语言.汇编语言.面向过程的语言,通过一层层…
论文:word2vec Parameter Learning Explained 发表时间:2016 发表作者:Xin Rong 论文链接:论文链接 为了揭开Word2vec的神秘面纱,不得不重新整理复习了Word2vec的相关资料. Xin Rong 的这篇英文paper是更多人首推的 Word2vec 参考资料.这篇论文理论完备,由浅入深,且直击要害,既有 高屋建瓴的 intuition 的解释,也有细节的推导过程.下面一起学习下这篇paper. 由于word2vec模型学习生成的词向量表示…
UC Berkeley的Deepak Pathak 使用了一个具有图像级别标记的训练数据来做弱监督学习.训练数据中只给出图像中包含某种物体,但是没有其位置信息和所包含的像素信息.该文章的方法将image tags转化为对CNN输出的label分布的限制条件,因此称为 Constrained convolutional neural network (CCNN). 该方法把训练过程看作是有线性限制条件的最优化过程: 其中是一个隐含的类别分布,是CNN预测的类别分布.目标函数是KL-divergen…
1.数学上,不变性 2.信息论上…
Link of the Paper: https://arxiv.org/pdf/1409.3215.pdf Main Points: Encoder-Decoder Model: Input sequence -> A vector of a fixed dimensionality -> Target sequence. A multilayered  LSTM: The LSTM did not have difficulty on long sentences. Deep LSTMs…
研究内容:弱监督时域动作定位 结果:Thumos14 mAP0.5 = 27.0 ActivityNet1.3 mAP0.5 = 34.5 从结果可以看出弱监督这种瞎猜的方式可以PK掉早些时候的一些全监督方法 Code: GitHub P.S.我在机器上复现始终差一点点 Motivation: 发现之前的工作没有考虑到背景类别,会将背景帧误分为动作类别,造成大量FP.本文提出了背景抑制网络BaSNet,引入了额外的背景类,两支镜像网络(一支为base网络,一支为用attention抑制背景的su…
http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answering Monday, June 27th, 9:00AM - 10:05AM. These papers will also be presented at the following poster session 1   Deep Compositional Captioning: Descr…
CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - 10:05AM. These papers will also be presented at the following poster session 1 Deep Compositional Captioning: Describing Novel Object Categories Witho…
CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View Subspace Clustering Xiaojie Guo, Xiaobo Wang, Zhen Lei, Changqing Zhang, Stan Z. Li Borrowing Treasures From the Wealthy: Deep Transfer Learning Thro…
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinci 10:30  ARS-L1.1—GROUP STRUCTURED DIRTY DICTIONARY LEARNING FOR CLASSIFICATION Yuanming Suo, Minh Dao, Trac Tran, Johns Hopkins University, USA; Hojj…
转自:http://blog.csdn.net/kezunhai/article/details/50176209 ================华丽分割线=================这部分来自知乎==================== 链接:http://www.zhihu.com/question/33272629/answer/60279003 有关action recognition in videos, 最近自己也在搞这方面的东西,该领域水很深,不过其实主流就那几招,我就班门…
程明明(南开大学):面向开放环境的自适应视觉感知 (图片来自valse2019程明明老师ppt) 面向识别与理解的神经网络共性技术 深度神经网络通用架构 -- VggNet(ICLR'15).ResNet(CVPR'16).DenseNet(CVPR'17).DLA(CVPR'18).Res2Net()富尺度空间的深度神经网络通用架构 富尺度空间的深度神经网络通用架构 网络结构: 应用:检测任务.分类任务.分割任务 通用视觉基元属性感知 显著性物体检测技术 A Simple Pooling-Ba…