zz 机器学习系统或者SysML&DL笔记】的更多相关文章

机器学习系统或者SysML&DL笔记(一)  Oldpan  2019年5月12日  0条评论  971次阅读  1人点赞 在使用过TVM.TensorRT等优秀的机器学习编译优化系统以及Pytorch.Keras等深度学习框架后,总觉得有必要从理论上对这些系统进行一些分析,虽然说在实践中学习是最快最直接的(指哪儿打哪儿.不会哪儿查哪儿),但恶补一些关于系统设计的一些知识还是非常有用了,权当是巩固一些基础了. 前言 在使用过TVM.TensorRT等优秀的机器学习编译优化系统以及Pytorch.…
前言 在使用过TVM.TensorRT等优秀的机器学习编译优化系统以及Pytorch.Keras等深度学习框架后,总觉得有必要从理论上对这些系统进行一些分析,虽然说在实践中学习是最快最直接的(指哪儿打哪儿.不会哪儿查哪儿),但恶补一些关于系统设计的一些知识还是非常有用了,权当是巩固一些基础了. 因此,有必要学习了解一下机器学习系统的设计和思想.如果不是很了解机器学习系统的设计,可以看下知乎上关于这个问题的回答:相比AI算法研究,计算机系统研究没落了吗? 以下是本系列文章的笔记来源: CSE 59…
Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.html 前言 这篇博客主要记录了Andrew Ng课程第6章机器学习系统的设计,Andrew用他的丰富经验讲述了如何有效.耗时少地实现一个机器学习系统,内容包括误差分析,误差度量,查准率和查全率等等 I 首先要做什么 以一个垃圾邮件分类器算法为例,为了解决这样一个问题,我们首先要做的决定是如何选择并…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 文章索引::"机器学习方法","深度学习方法","三十分钟理解"原创系列 2017年3 月,谷歌大脑负责人 Jeff Dean 在 UCSB 做了一场题为<通过大规模深度学习构建智能系统>的演讲[9].Jeff Dean 在演讲中提到,当前的做法是: 解决方案 = 机…
http://blog.csdn.net/pipisorry/article/details/44119187 机器学习Machine Learning - Andrew NG courses学习笔记 Machine Learning System Design机器学习系统设计 Prioritizing What to Work On优先考虑做什么 the first decision we must make is how do we want to represent x, that is…
一.问题与解决方案 通过多元分类算法进行手写数字识别,手写数字的图片分辨率为8*8的灰度图片.已经预先进行过处理,读取了各像素点的灰度值,并进行了标记. 其中第0列是序号(不参与运算).1-64列是像素值.65列是结果. 我们以64位像素值为特征进行多元分类,算法采用SDCA最大熵分类算法. 二.源码 先贴出全部代码: namespace MulticlassClassification_Mnist { class Program { static readonly string TrainDa…
一.要解决的问题 问题:常常一些单位或组织召开会议时需要录入会议记录,我们需要通过机器学习对用户输入的文本内容进行自动评判,合格或不合格.(同样的问题还类似垃圾短信检测.工作日志质量分析等.) 处理思路:我们人工对现有会议记录进行评判,标记合格或不合格,通过对这些记录的学习形成模型,学习算法仍采用二元分类的快速决策树算法,和上一篇文章不同,这次输入的特征值不再是浮点数,而是中文文本.这里就要涉及到文本特征提取. 为什么要进行文本特征提取呢?因为文本是人类的语言,符号文字序列不能直接传递给算法.而…
一.概述 本篇文章介绍通过YOLO模型进行目标识别的应用,原始代码来源于:https://github.com/dotnet/machinelearning-samples 实现的功能是输入一张图片,对图片中的目标进行识别,输出结果在图片中通过红色框线标记出来.如下: YOLO简介 YOLO(You Only Look Once)是一种最先进的实时目标检测系统.官方网站:https://pjreddie.com/darknet/yolo/ 本文采用的是TinyYolo2模型,可以识别的目标类型包…
一.概述 本篇我们首先通过回归算法实现一个葡萄酒品质预测的程序,然后通过AutoML的方法再重新实现,通过对比两种实现方式来学习AutoML的应用. 首先数据集来自于竞赛网站kaggle.com的UCI Wine Quality Dataset数据集,访问地址:https://www.kaggle.com/c/uci-wine-quality-dataset/data 该数据集,输入为一些葡萄酒的化学检测数据,比如酒精度等,输出为品酒师的打分,具体字段描述如下: Data fields Inpu…
北京时间5月17日上午消息,亚马逊在开源技术领域迈出了更大的步伐,宣布开放该公司的机器学习软件DSSTNE的源代码.这个最新项目将与谷歌的TensorFlow竞争,后者已于去年开源.亚马逊表示,在缺乏大量数据对机器学习系统进行训练的情况下,DSSTNE表现优异,而TensorFlow则擅长处理海量数据. 亚马逊表示,DSSTNE的速度也快于TensorFlow.在数据量较少的情况下,其处理速度是后者的2.1倍.亚马逊之所以开发这款软件,是为了在其零售平台上向用户推荐商品.要实现这一功能,这就必须…