首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
caffe中 softmax 函数的前向传播和反向传播
】的更多相关文章
caffe中 softmax 函数的前向传播和反向传播
1.前向传播: template <typename Dtype> void SoftmaxLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { ]->cpu_data(); Dtype* top_data = top[]->mutable_cpu_data(); Dt…
机器学习(ML)八之正向传播、反向传播和计算图,及数值稳定性和模型初始化
正向传播 正向传播的计算图 通常绘制计算图来可视化运算符和变量在计算中的依赖关系.下图绘制了本节中样例模型正向传播的计算图,其中左下角是输入,右上角是输出.可以看到,图中箭头方向大多是向右和向上,其中方框代表变量,圆圈代表运算符,箭头表示从输入到输出之间的依赖关系. 反向传播 训练深度学习模型 在训练深度学习模型时,正向传播和反向传播之间相互依赖.一方面,正向传播的计算可能依赖于模型参数的当前值,而这些模型参数是在反向传播的梯度计算后通过优化算法迭代的而这些当前值是优化算法最近一次根据反向传播算…
小白学习之pytorch框架(6)-模型选择(K折交叉验证)、欠拟合、过拟合(权重衰减法(=L2范数正则化)、丢弃法)、正向传播、反向传播
下面要说的基本都是<动手学深度学习>这本花书上的内容,图也采用的书上的 首先说的是训练误差(模型在训练数据集上表现出的误差)和泛化误差(模型在任意一个测试数据集样本上表现出的误差的期望) 模型选择 验证数据集(validation data set),又叫验证集(validation set),指用于模型选择的在train set和test set之外预留的一小部分数据集 若训练数据不够时,预留验证集也是一种luxury.常采用的方法为K折交叉验证.原理为:把train set分割成k个不重合…
caffe中的前向传播和反向传播
caffe中的网络结构是一层连着一层的,在相邻的两层中,可以认为前一层的输出就是后一层的输入,可以等效成如下的模型 可以认为输出top中的每个元素都是输出bottom中所有元素的函数.如果两个神经元之间没有连接,可以认为相应的权重为0.其实上图的模型只适用于全连接层,其他的如卷积层.池化层,x与y之间很多是没有连接的,可以认为很多权重都是0,而池化层中有可能部分x与y之间是相等的,可以认为权重是1. 下面用以上的模型来说明反向传播的过程.在下图中,我用虚线将y与损失Loss之间连接了起来,表示L…
caffe中softmax源码阅读
(1) softmax函数 (1) 其中,zj 是softmax层的bottom输入, f(zj)是softmax层的top输出,C为该层的channel数. (2) softmax_layer.cpp中的Reshape函数: template <typename Dtype> void SoftmaxLayer<Dtype>::Reshape(const vector<Blob<Dtype>…
BP原理 - 前向计算与反向传播实例
Outline 前向计算 反向传播 很多事情不是需要聪明一点,而是需要耐心一点,踏下心来认真看真的很简单的. 假设有这样一个网络层: 第一层是输入层,包含两个神经元i1 i2和截距b1: 第二层是隐含层,包含两个神经元h1 h2和截距b2, 第三层是输出o1,o2,每条线上标的wi是层与层之间连接的权重,激活函数默认为sigmoid函数. 赋初值为: 输入数据 i1=0.05,i2=0.10; 输出数据 o1=0.01, o2=0.99; 初始权重 w1=0.15,w2=0.20,w3=0…
反向传播算法(前向传播、反向传播、链式求导、引入delta)
参考链接: 一文搞懂反向传播算法…
caffe中softmax loss源码阅读
(1) softmax loss <1> softmax loss的函数形式为: (1) zi为softmax的输入,f(zi)为softmax的输出. <2> softmax loss对其输入zj求导: (2) 如果j==k,则zk是变量,否则zj是变量. 和的导数等于导数的和,对和中某个元素求导的话有: (2) softmax_loss_layer.cpp中的Forward_cpu()函数: template <typename Dtype> vo…
前向传播和反向传播实战(Tensor)
前面在mnist中使用了三个非线性层来增加模型复杂度,并通过最小化损失函数来更新参数,下面实用最底层的方式即张量进行前向传播(暂不采用层的概念). 主要注意点如下: · 进行梯度运算时,tensorflow只对tf.Variable类型的变量进行记录,而不对tf.Tensor或者其他类型的变量记录 · 进行梯度更新时,如果采用赋值方法更新即w1=w1+x的形式,那么所得的w1是tf.Tensor类型的变量,所以要采用原地更新的方式即assign_sub函数,或者再次使用tf.Variable包起…
caffe中python接口的使用
下面是基于我自己的接口,我是用来分类一维数据的,可能不具通用性: (前提,你已经编译了caffe的python的接口) 添加 caffe塻块的搜索路径,当我们import caffe时,可以找到. 对于这一步,一般我们都会把 cafffe 模块的搜索路经永久地加到先加$PYTHONPATH中去,如可以把 export PYTHONPATH=/path/to/caffe/python:$PYTHONPATH 写到 .bashrc中.而下面的做法,只是临时的做法哦: improt sys #sys.…