Kaggle 泰坦尼克】的更多相关文章

入门kaggle,开始机器学习应用之旅. 参看一些入门的博客,感觉pandas,sklearn需要熟练掌握,同时也学到了一些很有用的tricks,包括数据分析和机器学习的知识点.下面记录一些有趣的数据分析方法和一个自己撸的小程序. 1.Tricks 1) df.info():数据的特征属性,包括数据缺失情况和数据类型. df.describe(): 数据中各个特征的数目,缺失值为NaN,以及数值型数据的一些分布情况,而类目型数据看不到. 缺失数据处理:缺失的样本占总数比例极高,则直接舍弃:缺失样…
原文地址如下: https://www.kaggle.com/startupsci/titanic-data-science-solutions ---------------------------------------------------------------- 泰坦尼克数据科学解决方案: 1. 工作流程步骤: 在 Data Science Solutions book 这本书里,描述了在解决一个竞赛问题时所需要做的具体工作流程: 问题的定义 获取训练数据以及测试数据 加工.准备以及…
正文:14pt 代码:15px 1 初探数据 先看看我们的数据,长什么样吧.在Data下我们train.csv和test.csv两个文件,分别存着官方给的训练和测试数据. import pandas as pd #数据分析 import numpy as np #科学计算 from pandas import Series,DataFrame data_train = pd.read_csv("/Users/Hanxiaoyang/Titanic_data/Train.csv") da…
也不知道对不对,就凭着自己的思路写了一个 数据集:https://www.kaggle.com/c/titanic/data import torch import torch.nn as nn import pandas as pd import numpy as np class DataProcessing(object): def __init__(self): pass def get_data(self): data_train = pd.read_csv('train.csv')…
出处:http://blog.csdn.net/han_xiaoyang/article/details/49797143 2.背景 2.1 关于Kaggle 我是Kaggle地址,翻我牌子 亲,逼格这么高的地方,你一定听过对不对?是!这就是那个无数『数据挖掘先驱』们,在回答”枪我有了,哪能找到靶子练练手啊?”时候的答案! 这是一个要数据有数据,要实际应用场景有场景,要一起在数据挖掘领域high得不要不要的小伙伴就有小伙伴的地方啊!!! 艾玛,逗逼模式开太猛了.恩,不闹,不闹,说正事,Kaggl…
参考Kernels里面评论较高的一篇文章,整理作者解决整个问题的过程,梳理该篇是用以了解到整个完整的建模过程,如何思考问题,处理问题,过程中又为何下那样或者这样的结论等! 最后得分并不是特别高,只是到34%,更多是整理一个解决问题的思路,另外前面三个大步骤根据思维导图看即可,代码跟文字等从第四个步骤开始写起. ----------------------------------------------------------------------------------------------…
机器学习系列(3)_逻辑回归应用之Kaggle泰坦尼克之灾 标签: 机器学习应用 2015-11-12 13:52 3688人阅读 评论(15) 收藏 举报 本文章已收录于:  机器学习知识库  分类: 机器学习(19)  版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   作者:寒小阳 && 龙心尘 时间:2015年11月. 出处: http://blog.csdn.net/han_xiaoyang/article/details/49797143 http:…
转载 逻辑回归应用之Kaggle泰坦尼克之灾 此转载只为保存!!! ————————————————版权声明:本文为CSDN博主「寒小阳」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明.原文链接:https://blog.csdn.net/han_xiaoyang/article/details/49797143…
Titanic 沉没 参见:https://github.com/lijingpeng/kaggle 这是一个分类任务,特征包含离散特征和连续特征,数据如下:Kaggle地址.目标是根据数据特征预测一个人是否能在泰坦尼克的沉没事故中存活下来.接下来解释下数据的格式: survival 目标列,是否存活,1代表存活 (0 = No; 1 = Yes) pclass 乘坐的舱位级别 (1 = 1st; 2 = 2nd; 3 = 3rd) name 姓名 sex 性别 age 年龄 sibsp 兄弟姐…
最近一直断断续续的做这个泰坦尼克生存预测模型的练习,这个kaggle的竞赛题,网上有很多人都分享过,而且都很成熟,也有些写的非常详细,我主要是在牛人们的基础上,按照数据挖掘流程梳理思路,然后通过练习每一步来熟悉应用python进行数据挖掘的方式. 数据挖掘的一般过程是:数据预览——>数据预处理(缺失值.离散值等)——>变量转换(构造新的衍生变量)——>数据探索(提取特征)——>训练——>调优——>验证 1 数据预览 1.1 head() 预览数据集的前面几条数据可以大致…