6.RDD算子实战】的更多相关文章

from pyspark import SparkContext,SparkConf import sys if __name__ == '__main__': if len(sys.argv) != 2: print("Usage: wordcount <input>",file=sys.stderr) sys.exit(-1) conf = SparkConf() sc = SparkContext(conf=conf) counts = sc.textFile(sys…
本博文的主要内容是: 1.rdd基本操作实战 2.transformation和action流程图 3.典型的transformation和action RDD有3种操作: 1.  Trandformation      对数据状态的转换,即所谓算子的转换 2.  Action    触发作业,即所谓得结果的 3.  Contoller  对性能.效率和容错方面的支持,如cache.persist.checkpoint Contoller包括cache.persist.checkpoint. /…
Spark算子实战应用 数据集 :http://grouplens.org/datasets/movielens/ MovieLens 1M Datase 相关数据文件 : users.dat ---UserID::Gender::Age::Occupation::Zip-code movies.dat --- MovieID::Title::Genres ratings.dat ---UserID::MovieID::Rating::Timestamp SogouQ.mini 完成以下业务需求…
RDD算子 #常用Transformation(即转换,延迟加载) #通过并行化scala集合创建RDD val rdd1 = sc.parallelize(Array(1,2,3,4,5,6,7,8)) #查看该rdd的分区数量 rdd1.partitions.length val rdd1 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)) val rdd2 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)).map…
一.RDD算子补充 1.mapPartitions         mapPartitions的输入函数作用于每个分区, 也就是把每个分区中的内容作为整体来处理.   (map是把每一行) mapPartitions一次处理一个分区的所有数据,而map算子一次处理分区中的一条数据,所以mapPartitions处理数据的速度比map快,如果RDD分区的数据很庞大,用mapPartitions容易造成内存溢出, 如果RDD分区数据量小,从而提升速度的角度考虑,可以使用mapPartitions算子…
RDD:弹性分布式数据集, 是分布式内存的一个抽象概念 RDD:1.一个分区的集合, 2.是计算每个分区的函数 ,    3.RDD之间有依赖关系 4.一个对于key-value的RDD的Partitioner 5.一个存储存取每个Partition的优先位置的列表 RDD算子: Transformations:不会立即执行,只是记录这些操作 Actions:计算只有在action被提交的时候才被触发. RDD依赖关系: 窄依赖指的是每一个父RDD的Partition最多被子RDD的一个Part…
SparkContext SparkContext 是在 spark 库中定义的一个类,作为 spark 库的入口点: 它表示连接到 spark,在进行 spark 操作之前必须先创建一个 SparkContext 的实例,并且只能创建一个: 利用 SparkContext 实例创建的对象都是 RDD,这是相对于 SparkSession 说的,因为 它创建的对象都是 DataFrame: 创建 sc class SparkContext(__builtin__.object): def __i…
RDD算子调优 不废话,直接进入正题! 1. RDD复用 在对RDD进行算子时,要避免相同的算子和计算逻辑之下对RDD进行重复的计算,如下图所示: 对上图中的RDD计算架构进行修改,得到如下图所示的优化结果: 2. 尽早filter 获取到初始RDD后,应该考虑尽早地过滤掉不需要的数据,进而减少对内存的占用,从而提升Spark作业的运行效率. 本文首发于公众号:五分钟学大数据,欢迎围观 3. 读取大量小文件-用wholeTextFiles 当我们将一个文本文件读取为 RDD 时,输入的每一行都会…
分别观察一下集合与算子的sortBy()的参数列表 普通集合的sortBy() RDD算子的sortBy() 结论:普通集合的sortBy就没有false参数,也就是说只能默认的升序排. 如果需要对普通集合中的元素需要升序排怎么办? 如图所示,我这调用的sortby()是List集合的方法了,不是算子,所以不能加false参数指定降序排,只能默认的升序排了,但是用reverse()反转就能达到一样的效果. 或者使用takeRight()方法取后十个也一样,注意的是后十个也是按升序排的…
Spark学习笔记总结 01. Spark基础 1. 介绍 Spark可以用于批处理.交互式查询(Spark SQL).实时流处理(Spark Streaming).机器学习(Spark MLlib)和图计算(GraphX). Spark是MapReduce的替代方案,而且兼容HDFS.Hive,可融入Hadoop的生态系统,以弥补MapReduce的不足. 2. Spark-Shell spark-shell是Spark自带的交互式Shell程序,用户可以在该命令行下用scala编写spark…