判断异常值方法:Z-Score 计算公式 Z = (X-μ)/σ 其中μ为总体平均值,X-μ为离均差,σ表示标准差.z的绝对值表示在标准差范围内的原始分数与总体均值之间的距离.当原始分数低于平均值时,z为负,以上为正. 代码演示 1 生成一个 df import pandas as pd # 导入pandas库 # 生成异常数据 df = pd.DataFrame({'col1': [1, 120, 3, 5, 2, 12, 13], 'col2': [12, 17, 31, 53, 22, 3…
Spyder   Ctrl + 4/5: 块注释/块反注释 本文总结的是我们大家在python中常见的数据预处理方法,以下通过sklearn的preprocessing模块来介绍; 1. 标准化(Standardization or Mean Removal and Variance Scaling) 变换后各维特征有0均值,单位方差.也叫z-score规范化(零均值规范化).计算方式是将特征值减去均值,除以标准差. sklearn.preprocessing.scale(X) 一般会把trai…
http://www.zuowenjun.cn/post/2015/05/20/162.html 判断 DataGridView控件滚动条是否滚动到当前已加载的数据行底部,其实方法很简单,就是为DataGridView控件添加Scroll事件,然后写入以下代码就可以了,应用范围:可实现分部加载数据,以提升用户体验! ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 private void dataGridView1_Scroll(object sender, ScrollE…
1.标准化(中心化) 在许多机器学习执行前,需要对数据集进行标准化处理.因为很对算法假设数据的特征服从标准正态分布.所以如果不对数据标准化,那么算法的效果会很差. 例如,在学习算法的目标函数,都假设数据集的所有特征集中在0附近,并且有相同的方差.如果某个特征的方差远大于其他特征的方差,那么该特征可能在目标函数占的权重更大,使得算法不能从所有特征中学习. 在实践中,我们往往忽略了分布的形状,只需要通过减去每个特征的均值,然后除以非标准特征的标准偏差来转换数据. scale方法提供了在一个类似数据的…
function getDataType(any){ /* (1) Object.prototype.toString.call 方法判断类型: 优点:通用,返回"[object String]" 具体object的类型 缺点:不能返回继承的类型 (2)typeof x 缺点:对object类型不能细分: 优点:对空null的判断 'undefined'的应用; 返回类型有:'undefined' “string” 'number' 'boolean' 'function' 'obje…
数据预处理主要包括数据清洗.数据集成.数据变换和数据规约,处理过程如图所示. 一.数据清洗 1.缺失值处理:删除.插补.不处理 ## 拉格朗日插值代码(使用缺失值前后各5个未缺失的数据建模) import pandas as pd #导入数据分析库Pandas from scipy.interpolate import lagrange #导入拉格朗日插值函数 inputfile = '../data/catering_sale.xls' #销量数据路径 outputfile = '../tmp…
preface 在上一章节我们聊了python大数据分析的基本模块,下面就说说2个项目吧,第一个是进行淘宝商品数据的挖掘,第二个是进行文本相似度匹配.好了,废话不多说,赶紧上车. 淘宝商品数据挖掘 数据来源: 自己写个爬虫爬吧,爬到后入库(mysql). 数据清洗: 所谓的数据清洗,就是把一些异常的.缺失的数据处理掉,处理掉不一定是说删除,而是说通过某些方法将这个值补充上去,数据清洗目的在于为了让我们数据的可靠,因为脏数据会对数据分析产生影响. 拿到数据后,我们进行数据清洗分为两方面: 缺失值发…
小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是Jupyter lab,所用的库和版本大家参考: Python 3.7.1(你的版本至少要3.4以上) Scikit-learn 0.20.0 (你的版本至少要0.19) Numpy 1.15.3, Pandas 0.23.4, Matplotlib 3.0.1, SciPy 1.1.0 1 skl…
在拿到一份数据准备做挖掘建模之前,首先需要进行初步的数据探索性分析(你愿意花十分钟系统了解数据分析方法吗?),对数据探索性分析之后要先进行一系列的数据预处理步骤.因为拿到的原始数据存在不完整.不一致.有异常的数据,而这些“错误”数据会严重影响到数据挖掘建模的执行效率甚至导致挖掘结果出现偏差,因此首先要数据清洗.数据清洗完成之后接着进行或者同时进行数据集成.转换.归一化等一系列处理,该过程就是数据预处理.一方面是提高数据的质量,另一方面可以让数据更好的适应特定的挖掘模型,在实际工作中该部分的内容可…
上次我们使用精度评估得到的成绩是 61%,成绩并不理想,再使 recall 和 f1 看下成绩如何? 首先我们先了解一下 召回率和 f1. 真实结果 预测结果 预测结果   正例 反例 正例 TP 真正例 FN 假反例 反例 FP 假正例 TN 真反例 召回率:TP/(TP+FN) f1:2TP/(2TP+FN+FP) 我们使用scikit-learn的分类报告来查看各种其他指标: 现在我们来介绍一下缩放和中心化,他们是预处理数值数据最基本的方法,接下来,看看它们是否对模型有影响,以及怎样的影响…