题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k 输出格式: 共n行,每行一个整数表示满足要求的数对(x,y)的个数 输入输出样例 输入样例#1: 复制 2 2 5 1 5 1 1 5 1 5 2 输出样例#1: 复制 14 3 说明 100%的数据满足:1≤n≤50000,1≤a≤b≤500…
正解:莫比乌斯反演 解题报告: 传送门! 首先看到这个显然就想到莫比乌斯反演$QwQ$? 就先瞎搞下呗$QwQ$ $gcd(x,y)=k$,即$gcd(\left \lfloor \frac{x}{k} \right \rfloor,\left \lfloor \frac{y}{k} \right \rfloor)=1$ 然后这个,虽然以前推过几次辣,,,但还是重新推下,,,太久没碰这些东西辣/$kel\ kel\ kel$ 设$F[k]$表示$gcd(x,y)$为$k$的倍数的数量,显然有$F…
题意:求$\sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)==k]$(1<=a,b,c,d,k<=50000). 是洛谷P3455 [POI2007]ZAP-Queries加强版,多了下界. 设$f(n,m)=\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==k]$ 根据容斥可以显然的得出Ans=f(b,d)-f(b,c-1)-f(a-1,d)+f(a-1,c-1). 对于f(n,m)的求解: $f(n,m)=\sum_{i=1}^{n}\…
传送门 我们考虑容斥,设$ans(a,b)=\sum_{i=1}^a\sum_{j=1}^b[gcd(a,b)==k]$,这个东西可以和这一题一样去算洛谷P3455 [POI2007]ZAP-Queries 然后只要在这上面加个容斥就好了,答案就是$ans(b,d)-ans(b,c-1)-ans(a-1,d)+ans(a-1,c-1)$ //minamoto #include<iostream> #include<cstdio> #define ll long long using…
[BZOJ2301][HAOI2011]Problem B(莫比乌斯反演) 题面 Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个整数表示满足要求的数对(x,y)的个数 Sample Input 2 2 5 1 5 1 1 5 1 5 2 Sample Outp…
点此看题面 大致题意: 求\(\sum_{x=a}^b\sum_{y=c}^d[gcd(x,y)==k]\). 关于另一道题目 在看这篇博客之前,如果你做过一道叫做[BZOJ1101][POI2007] Zap的题目,那么此题就很简单了. 如果没做过,还是推荐你先去做一下吧. 解题思路 做完了上面提到的那题,或许对这题你就有一个很显然的想法了. 即差分. 其实,上面那题就是此题\(a=c=1\)的特殊版本. 因此,如果令\(ans_{i,j}=\sum_{x=1}^i\sum_{y=1}^j[g…
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37166 题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 思路:本题使用莫比乌斯反演要利用分块来优化,那么每次询问的复杂度降为2*sqrt(n)+2*sqrt(m).注意到 n/i ,在连续的k区间内存在,n/i=n/(i+k).所有对这连续的区间可以一次求出…
2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 6519  Solved: 3026[Submit][Status][Discuss] Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Outp…
2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 436  Solved: 187[Submit][Status] Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个…
P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入样例#1: 4 输出样例#1: 4 说明 对于样例\((2,2),(2,4),(3,3),(4,2)\) \(1<=N<=10^7\) 来源:bzoj2818 本题数据为洛谷自造数据,使用CYaRon耗时5分钟完成数据制作. Solution 方法1:莫比乌斯反演,方法和yy的gcd一样 方法2:…
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 很好的一道题.首先把每个询问转化为4个子询问,最后的结果就是这四个子询问的记过加加减减,类似二维前缀和.那么问题转化为在1 <= x <= lmtx, 1 <= y <= lmty时gcd(x, y) == k的对数,这个问题在转化一下,转化成1 <= x <= lmtx / k,1 <= y <= lmty / k时x与y互质的对数.莫比乌斯反…
题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. \(1 \leq T \leq 10^4\),\(1 \leq n,m \leq 10^7\). 今天终于学会了莫比乌斯反演反演~~,就写篇博客加深下印象吧. 要说这莫比乌斯反演有多么博大精深,就不得不从莫比乌斯函数 \(\mu(x)\) 说起. 我们定义 \(\mu(x)\) 为: \[\mu(…
题目分析: 比较有意思,但是套路的数学题. 题目要求$ \prod_{i=1}^{n} \prod_{j=1}^{m}Fib(gcd(i,j)) $. 注意到$ gcd(i,j) $有大量重复,采用莫比乌斯反演.可以写成: $ \prod_{i=1}^{min(n,m)}Fib(i)^{\sum_{i|d}\mu(\frac{d}{i})\lfloor \frac{n}{d}\rfloor\lfloor \frac{m}{d}\rfloor} $. 更进一步的,我们可以发现幂是一个求和,那么把求…
传送门 原来……莫比乌斯反演是这么用的啊……(虽然仍然不是很明白) 首先,题目所求如下$$\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=prim]$$ 我们设$f(d)$表示$gcd(i,j)=d$的$(i,j)$的对数,$g(d)$表示存在公因数为$d$的$(i,j)$的对数 那么就有$$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=d]$$ $$g(d)=\sum_{d|k}f(k)=\lfloor\frac{N}{d}\rfloor\l…
题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000 思路:莫比乌斯反演,ans=solve(b/k,d/k)-solve((a-1)/k,d/k)-solve(b/k,(c-1)/k)+solve((a-1)/k,(c-1)/k) 代码1:超时. #include<iostream> #include&l…
2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 6015  Solved: 2741[Submit][Status][Discuss] Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Outp…
题意:\( g(k) = 2^{f(k)} \) ,求\( \sum_{i = 1}^{n} g(i) \),其中\( f(k)\)代表k的素因子个数. 思路:题目意思很简单,但是着重于推导和简化,这是数论题的一贯思路,其中g(k)的方程可以看出是求k的无平方因子的个数,那么题目就是求1~n的无平方因字数的和了. 首先我们可以从莫比乌斯函数入手. 从\( \mu(d) \)的性质有,当d为素数单次连积时\( \mu(d)=(-1)^k\),其余d不为1时\( \mu(d)=0\) 那么可知\(…
Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个整数表示满足要求的数对(x,y)的个数 Sample Input 2 2 5 1 5 1 1 5 1 5 2 Sample Output 14 3 HINT 100%的数据满足:1≤n≤50000,1≤a≤b≤50…
原题 就是让你求\(\sum\limits_{i=1}\sum\limits_{j=1}d(ij)\)(其中\(d(x)\)表示\(x\)的因数个数) 首先有引理(然而并没有证明): \(d(ij)=\sum\limits_{x|i}\sum\limits_{y|j}[gcd(x,y)=1]\) 带到原式里得到: \(ans=\sum\limits_{i=1}\sum\limits_{j=1}\sum\limits_{x|i}\sum\limits_{y|j}[gcd(x,y)=1]\) 利用\…
传送门:https://www.luogu.org/problemnew/show/P2522 题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 分析 特殊情况和POI2007 ZAP-Queries相同. 接下来的问题就是解决普遍情况,不难得到答案就是\(ans(b,d)-ans(b,c-1)-ans(a-1,d)+ans(a-1,c-1)\),这是容斥原理. 这道题目有毒,int和l…
题目链接 简单的数学题 题目描述 输入一个整数n和一个整数p,你需要求出 \[\sum_{i=1}^n\sum_{j=1}^n (i\cdot j\cdot gcd(i,j))\ mod\ p\]  其中\(gcd(a,b)\)表示\(a\)与\(b\)的最大公约数 输入 一行两个整数\(p,n\) 输出 一行一个整数,为题目中所求值 样例 样例输入 998244353 2000 样例输出 883968974 数据范围 \(n\leq 10^{10}\) \(5\times 10^8 \leq…
传送门 yyb大佬太强啦…… 感觉还是有一点地方没有搞懂orz //minamoto #include<cstdio> #include<iostream> #include<cstring> using namespace std; #define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++) <<],*p1=buf,*p2=bu…
传送门 不会…… 两篇加在一起都看不懂…… https://www.cnblogs.com/cellular-automaton/p/8241128.html https://www.luogu.org/blog/cjyyb/solution-p3768 //minamoto #include<iostream> #include<cstdio> #include<map> #define ll long long using namespace std; ; map&…
题目描述 求 \[\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} i*j*gcd(i,j) \pmod{p}\] \(n<=10^{10}\),\(p\)是质数 题解 推导很长就省略啦,, 有空补回来 最后推得这个式子: \[\sum\limits_{T = 1}^{n} (\frac{\lfloor \frac{n}{T} \rfloor * (\lfloor \frac{n}{T} \rfloor + 1)}{2})^2 * T^2 * \varphi…
求: \(S(n,m)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\) 显然: \(S(n,m)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\frac{ij}{gcd(i,j)}\) 枚举g: \(S(n,m)=\sum\limits_{g=1}^{n}\frac{1}{g}\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}ij[gcd(i,j)==g]\) 除以…
题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d, 且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000 思路:第一题反演…… 利用容斥原理将原询问拆成4个,问题就转化为: 1<=i<=trunc(a div k),1<=j<=trunc(b div k),gcd(i,j)=1的(i,j)数对个数 令f(i)表示满足gcd(x,y)=i时(x,…
题目描述 设d(x)为x的约数个数,给定N.M,求 \sum^N_{i=1}\sum^M_{j=1}d(ij)∑i=1N​∑j=1M​d(ij) 输入输出格式 输入格式: 输入文件包含多组测试数据.第一行,一个整数T,表示测试数据的组数.接下来的T行,每行两个整数N.M. 输出格式: T行,每行一个整数,表示你所求的答案. 输入输出样例 输入样例#1: 复制 2 7 4 5 6 输出样例#1: 复制 110 121 说明 1<=N, M<=50000 1<=T<=50000 有一个…
题意:求$(\sum_{i=1}^{n}\sum_{j=1}^{n}ijgcd(i,j))mod p$(p为质数,n<=1e10) 很显然,推式子. $\sum_{i=1}^{n}\sum_{j=1}^{n}ijgcd(i,j)$ =$\sum_{d=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}ijd[gcd(i,j)==d]$ =$\sum_{d=1}^{n}d^3\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\sum_{j=1}^{\l…
题意:问题可以转化成求$\sum_{i=1}^{n}\sum_{j=1}^{m}(2*gcd(i,j)-1)$ 将2和-1提出来可以得到:$2*\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j)-n*m$ 令Ans=$\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j)$ =$\sum_{d=1}^{n}d\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==d]$ =$\sum_{d=1}^{n}d\sum_{i=1}^{\lf…
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k 输出格式: 共n行,每行一个整数表示满足要求的数对(x,y)的个数 输入输出样例 输入样例#1: 复制 2 2 5 1 5 1 1 5 1 5 2 输出样例#1: 复制 14 3 说明 100%的数据满足:1≤n≤50000,1≤a≤b≤500…