客户端缓存分为Http缓存和本地缓存,使用缓存好处很多,例如减少相同数据的重复传输,节省网络带宽资源缓解网络瓶颈,降低了对原始服务器的要求,避免出现过载,这样服务器可以更快响应其他的请求 Http缓存 http缓存分文强制缓存和协商缓存,主要用来在客户端存储一些不经常变化的的静态文件,像图片.CSS.JS等.在讲强制缓存和协商缓存之前,先了解一下Http缓存的过程: 强制缓存 浏览器在请求某一个资源时,会先获取资源的header信息,判断是否命中强缓存(cache-control和expires…
*****************开篇介绍**************** ----------------------------------------------------------------------------------------------------------------------- 三个重要的标准: ---大型缓存架构中需要首先说一下: 海量数据:支持海量数据缓存,支持大规模数据: 高并发:在亿级QPS的场景下,可以做到满足业务需求: 高可用:表示redis可以做…
亿级流量电商详情页系统的大型高并发与高可用缓存架构实战 完整高清含源码,需要课程的联系QQ:2608609000 1[免费观看]课程介绍以及高并发高可用复杂系统中的缓存架构有哪些东西2[免费观看]基于大型电商网站中的商品详情页系统贯穿的授课思路介绍3小型电商网站的商品详情页的页面静态化架构以及其缺陷11分钟4大型电商网站的异步多级缓存构建+nginx数据本地化动态渲染的架构9分钟5能够支撑高并发+高可用+海量数据+备份恢复的redis的重要性5分钟6从零开始在虚拟机中一步一步搭建一个4个节点的C…
承接之前的博:亿级流量场景下,大型缓存架构设计实现 续写本博客: ****************** start: 接下来,我们是要讲解商品详情页缓存架构,缓存预热和解决方案,缓存预热可能导致整个系统崩溃的问题以及解决方案: 缓存--->热: 预热:热数据 解决方案中和架构设计中,会引入大数据的实时计算技术---> storm: 为什么引入这storm,必须是storm吗,我们后面面去讲解那个解决方案的时候再说: 为什么引入storm: 因为一些热点数据相关的一些实时处理方案,比如快速预热,…
本篇摘自<亿级流量网站架构核心技术>第二章 Nginx负载均衡与反向代理 部分内容. 当我们的应用单实例不能支撑用户请求时,此时就需要扩容,从一台服务器扩容到两台.几十台.几百台.然而,用户访问时是通过如http://www.jd.com的方式访问,在请求时,浏览器首先会查询DNS服务器获取对应的IP,然后通过此IP访问对应的服务. 因此,一种方式是www.jd.com域名映射多个IP,但是,存在一个最简单的问题,假设某台服务器重启或者出现故障,DNS会有一定的缓存时间,故障后切换时间长,而且…
目录 疯狂创客圈 Java 分布式聊天室[ 亿级流量]实战系列之 -30[ 博客园 总入口 ] 写在前面 1.1. 快速的能力提升,巨大的应用价值 1.1.1. 飞速提升能力,并且满足实际开发要求 1.1.2. 越来越多.大量的应用场景 1.2. 高并发架构中的6大集群 1.2.1. 支撑亿级流量的IM整体架构 1.2.2. IM通讯协议介绍 1.2.3. 长连接和短连接 1.2.4. 技术选型 1.3. 基于Redis 设计分布式Session 1.3.1. SessionLocal本地会话…
目录 写在前面 亿级流量IM的应用场景 十万级 单体IM 系统 高并发分布式IM系统架构 疯狂创客圈 Java 分布式聊天室[ 亿级流量]实战系列之 -10[ 博客园 总入口 ] 写在前面 ​ 大家好,我是作者尼恩.目前和几个小伙伴一起,组织了一个高并发的实战社群[疯狂创客圈].正在开始高并发.亿级流程的 IM 聊天程序 学习和实战 ,今天是第10篇. 亿级流量IM的应用场景 随着移动互联网.AI的飞速发展,高性能高并发IM(即时通讯),有着非常广泛的应用场景. 一切高实时性通讯.消息推送的场景…
疯狂创客圈 Java 高并发[ 亿级流量聊天室实战]实战系列 [博客园总入口 ] 架构师成长+面试必备之 高并发基础书籍 [Netty Zookeeper Redis 高并发实战 ] 前言 Crazy-SpringCloud 微服务脚手架 &视频介绍: Crazy-SpringCloud 微服务脚手架,是为 Java 微服务开发 入门者 准备的 学习和开发脚手架.并配有一系列的使用教程和视频,大致如下: 高并发 环境搭建 图文教程和演示视频,陆续上线: 中间件 链接地址 Linux Redis…
一.背景 某一日收到上游调用方的反馈,提供的某一个Dubbo接口,每天在固定的时间点被短时间熔断,抛出的异常信息为提供方dubbo线程池被耗尽.当前dubbo接口日请求量18亿次,报错请求94W/天,至此开始了优化之旅. 二.快速应急 2.1 快速定位 首先进行常规的系统信息监控(机器.JVM内存.GC.线程),发现虽稍有突刺,但都在合理范围内,且跟报错时间点对不上,先暂时忽略. 其次进行流量分析,发现每天固定时间点会有流量突增的情况,流量突增的点跟报错的时间点也吻合,初步判断为短时大流量导致.…
亿级流量电商系统JVM模型参数预估方案,在原来的基础上采用ParNew+CMS垃圾收集器 一.亿级流量分析及jvm参数设置 1. 需求分析 大促在即,拥有亿级流量的电商平台开发了一个订单系统,我们应该如何来预估其并发量?如何根据并发量来合理配置JVM参数呢? 假设,现在有一个场景,一个电商平台,比如京东,需要承担每天上亿的流量.现在开发了一个订单系统,那么这个订单系统每秒的并发量是多少呢?我们应该如何分配其内存空间呢?先来分析一下 每日亿级流量,平均一个用户点击量在20-30左右,通过这个计算出…