卷积神经网络学习笔记——SENet】的更多相关文章

完整代码及其数据,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 这里结合网络的资料和SENet论文,捋一遍SENet,基本代码和图片都是来自网络,这里表示感谢,参考链接均在后文.下面开始. SENet论文写的很好,有想法的可以去看一下,我这里提供翻译地址: 深度学习论文翻译解析(十六):Squeeze-and-Excitation Networks 在深度学习领域,CNN分类网络的发展…
完整代码及其数据,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 在整理这些知识点之前,我建议先看一下原论文,不然看我这个笔记,感觉想到哪里说哪里,如果看了论文,还有不懂的,正好这篇博客就是其详细解析,包括源码解析. 我翻译的链接: 深度学习论文翻译解析(五):Siamese Neural Networks for One-shot Image Recognition 下面开始: 1,S…
完整代码及其数据,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 这里结合网络的资料和MobileNet论文,捋一遍MobileNet,基本代码和图片都是来自网络,这里表示感谢,参考链接均在后文.下面开始. MobileNet论文写的很好,有想法的可以去看一下,我这里提供翻译地址: 深度学习论文翻译解析(十七):MobileNets: Efficient Convolutional Ne…
看了很多关于卷积神经网络的论文和资料 可是我发现一个问题,就是pooling会出现一个问题 我能找到的代码里面都是用的均值子采样,如果改成最大或最小,或P范数都会在学习训练的时候遇到不知道怎么处理的问题 刚刚看到一篇关于反卷积的文章,其中就解决了max,min,median这一类的问题,就是在正向pooling的时候,记下这些max,min,median的位置,然后在BP的时候误差反馈的时候把误差放在记下的位置. pooling 是否真的有必要?…
+ mu) * v # 位置更新变了形式 对于NAG(Nesterov's Accelerated Momentum)的来源和数学公式推导,我们推荐以下的拓展阅读: Yoshua Bengio的Advances in optimizing Recurrent Networks,Section 3.5. Ilya Sutskever's thesis (pdf)在section 7.2对于这个主题有更详尽的阐述. 学习率退火 在训练深度网络的时候,让学习率随着时间退火通常是有帮助的.可以这样理解:…
神经网络推荐博客: 深度学习概述 神经网络基础之逻辑回归 神经网络基础之Python与向量化 浅层神经网络 深层神经网络 前言 首先声明,以下内容绝大部分转自知乎智能单元,他们将官方学习笔记进行了很专业的翻译,在此我会直接copy他们翻译的笔记,有些地方会用红字写自己的笔记,本文只是作为自己的学习笔记.本文内容官网链接:Optimization Note , 1) # 含3个数字的随机输入向量(3x1) h1 = f(np.dot(W1, x) + b1) # 计算第一个隐层的激活数据(4x1)…
这已经是我的第四篇博客学习卷积神经网络了.之前的文章分别是: 1,Keras深度学习之卷积神经网络(CNN),这是开始学习Keras,了解到CNN,其实不懂的还是有点多,当然第一次笔记主要是给自己心中留下一个印象,知道什么是卷积神经网络,当然主要是学习Keras,顺便走一下CNN的过程. 2,深入学习卷积神经网络(CNN)的原理知识,这次是对CNN进行深入的学习,对其原理知识认真学习,明白了神经网络如何识别图像,知道了卷积如何运行,池化如何计算,常用的卷积神经网络都有哪些等等. 3,Tensor…
1. 传统的边缘检测(比如Sobel)手工设计了3*3的filter(或者叫kernel)的9个权重,在深度学习中,这9个权重都是学习出来的参数,会比手工设计的filter更好,不但可以提取90度.0度的边缘,也可以提取出任意朝向的边缘(比如73度).把这9个权重当成参数的思想已经成为计算机视觉中最为有效的思想之一. 2. Padding 对于原始的卷积操作,原图分辨率为n*n,filter分辨率为f*f,则卷积后的结果是 (n-f+1)*(n-f+1).有两个缺点:1)每次卷积操作都会把图像缩…
链接: 在训练卷积神经网络(CNN)的某一个卷积层时,实际上是在训练一系列的滤波器(filter).简单来说,训练CNN在相当意义上是在训练每一个卷积层的滤波器.让这些滤波器组对特定的模式有高的激活,以达到CNN网络的分类/检测等目的. 卷积层: 需要记住的是(过滤器)权值的纵深维度(depth dimension)和输入图像的纵深维度是相同的.权值会延伸到输入图像的整个深度.因此,和一个单一权值矩阵进行卷积会产生一个单一纵深维度的卷积化输出.大多数情况下都不使用单一过滤器(权值矩阵),而是应用…
tensorflow中使用mnist数据集训练全连接神经网络 ——学习曹健老师“人工智能实践:tensorflow笔记”的学习笔记, 感谢曹老师 前期准备:mnist数据集下载,并存入data目录: 文件列表:四个文件,分别为训练和测试集数据 Four files are available on 官网  http://yann.lecun.com/exdb/mnist/ : train-images-idx3-ubyte.gz:  training set images (9912422 by…