前言:想了两个小时orz,最后才想到要用约数个数定理…… ------------- 题目大意: 给定$n,q,A[1],A[2],A[3]$ 现有$A[i]=(A[i-1]+A[i-2]+A[i-3])mod q$ 求$(\sum_{i=1}^n \prod_{d|i} d^{A_i})mod10007$的值. $n\leq 300000,q,A[1],A[2],A[3]\leq 10^{16}$. ------------------------ 朴素算法是$O(n^2 \log n)$的,…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1492 这里先讲一下约数个数定理: 对于正整数x,将其质因分解为 x = pow(p1, a) * pow*(p2, b) * pow(p3, c) * ... 则其约数个数为:num(x) = (a+1) * (b+1) * (c+1) *... 推导: 由约数定义可知p1^a1的约数有:p1^0, p1^1, p1^2......p1^a1 ,共(a1+1)个;同理p2^a2的约数有(a2+1)个…
对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数. 所以,n以内的反质数即为不超过n的约数个数最多的数. 怎样计算约数个数? 约数个数定理:对于一个大于1正整数n可以分解质因数:n=p1^a1*p2^a2*p3^a3*…*pk^ak,则n的正约数的个数就是(a1+1)(a2+1)(a3+1)…(ak+1) .其中a1.a2.a3…ak是p1.p2.p3,…pk的指数.   所以,只需枚举一个数…
素数必然符合题意. 对于合数,如若它是某个素数x的k次方(k为某个素数y减去1),一定不符合题意.只需找出这些数. 由约数个数定理,其他合数一定符合题意. 就从小到大枚举素数,然后把它的素数-1次方都排除即可. #include<cstdio> #include<cmath> using namespace std; #define MAXP 1000100 #define EPS 0.00000001 typedef long long ll; ll L,R; bool isNo…
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} a_{\frac n d} \] 双重因子 \[ \sum_{k | n} \sum_{j | k} a_{k, j} = \sum_{k | n} \sum_{j | \frac n k} a_{jk, k} \] \[ \sum_{n | k} \sum_{k | j} a_{k, j} = \…
d(x)表示x的约数个数,让你求(l,r<=10^12,r-l<=10^6,k<=10^7) #include<cstdio> using namespace std; #define MOD 998244353ll #define MAXP 1000100 typedef long long ll; ll x,y; int T,K; bool isNotPrime[MAXP+10]; int num_prime,prime[MAXP+10]; void shai() { f…
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; typedef long long int64; ; #define maxn 2000005 int top,tot,d[maxn],prim[maxn],mu[maxn]; bool vis[maxn]; int6…
Mathematicians love all sorts of odd properties of numbers. For instance, they consider to be an interesting number, since it is the first odd number for which the sum of its divisors is larger than the number itself. To help them search for interest…
题目: POJ1845 分析: 首先用线性筛把\(A\)分解质因数,得到: \[A=p_1^{a_1}*p_2^{a_2}...*p_n^{a_n} (p_i是质数且a_i>0) \] 则显然\(A^B\)分解质因数后为 \[A=p_1^{a_1B}*p_2^{a_2B}...*p_n^{a_nB} (p_i是质数且a_i>0) \] 接下来隆重推出约数和定理:(证明见[知识总结]约数个数定理和约数和定理及其证明) \[Sum=\prod_{i=1}^n \sum_{j=0}^{a_i}p_i…
https://ac.nowcoder.com/acm/contest/907/B t次询问,每次给你一个数n,求在[1,n]内约数个数最多的数的约数个数 分析: 根据约数和定理:对于一个大于1正整数n可以分解质因数:n=p1^a1*p2^a2*p3^a3*…*pk^ak,则由约数个数定理可知n的正约数有(a₁+1)(a₂+1)(a₃+1)…(ak+1)个, 暴力算出每一个数的约数的个数,超时! 根据唯一分解定理,我们知道每一个数都可以用质因子的积表示,而约数的个数只与指数有关! 我们知道pn>…