hdu1404,hdu1517 (博弈论入门)】的更多相关文章

SG定理: 根据Sprague-Grundy定理(SG定理),对于某些博弈论问题可以这样思考: 首先可以确定一个必败状态(记为P)或必胜状态(记为N): 这样一来,若某一状态X若 可以 直接转移到P,则可以确定X为必胜状态: 若某一状态X 只能 转移到N,则可以确定X为必败状态. 以此通过递推可确定先手必胜或必败. 题一:hdu1404 代码: #include<iostream> #include<cstring> #include<cmath> #include&l…
更好的阅读体验点这里 nim游戏 nim游戏 有两个顶尖聪明的人在玩游戏,游戏规则是这样的: 有\(n\)堆石子,两个人可以从任意一堆石子中拿任意多个石子(不能不拿),没法拿的人失败.问谁会胜利 nim游戏是巴什博奕的升级版(不懂巴什博奕的可以看这里) 它不再是简单的一个状态,因此分析起来也棘手许多 如果说巴什博奕仅仅博弈论的一个引子的话, nim游戏就差不多算是真正的入门了 博弈分析 面对新的博弈问题,我们按照套路,从简单的情况入手 当只有一堆石子的时候,先手可以全部拿走.先手必胜 当有两堆石…
题目链接:https://www.luogu.org/problem/P3150 这道题目是博弈论的入门题. 我们以 必胜态 和 必败态 来讲解这个问题. 首先,下面的图片演示了前8个数的必胜态和必败态: 可以发现: 当 \(m=1,3,5,7\) 的时候都是必败态: 当 \(m=2,4,6,8\) 的时候都是必胜态. 我们不妨用数学归纳法来证明一下: 对于任意一个大于8的 \(m\) ,假设我已知它前面的 \(m-1\) 个数的状态已经确定,并且奇数都是必败态,偶数都是必胜态.则: 如果 \(…
说实话,我真的对这个游戏看得是一脸懵逼,因为(我太弱了)我没有明白一些变量的意思,所以一直很懵,现在才明白,这让我明白博弈论(还可以骗钱)博大精深; 以下是我自己思考的过程,也许不严谨,但是最终明白了. 这里只是粗略地介绍Nim游戏,一个入门博客,以来更好地进入SG函数(因为我才刚学 游戏简介 背景故事我就不说了,直接介绍游戏规则. 有n堆物品,每堆有$a_{i}$个物品,两个玩家每次可以任选一堆挑出任意整数个物品(可以整堆取完),但不能不取,取走最后一个物品的为胜者. 这个游戏历史久远,曾用来…
文章原地址:http://blog.csdn.net/zhangxiang0125/article/details/6174639 博弈论:是二人或多人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜目标的理论.博弈论是研究互动决策的理论.博弈可以分析自己与对手的利弊关系,从而确立自己在博弈中的优势,因此有不少博弈理论,可以帮助对弈者分析局势,从而采取相应策略,最终达到取胜的目的. 博弈论分类:(摘自百度百科) (一)巴什博奕(Bash Game):只有一堆n个物品,两个人轮流从这堆…
今天初步学习了一下博弈论……感觉真的是好精妙啊……希望这篇博客可以帮助到和我一样刚学习博弈论的同学们. 博弈论,又被称为对策论,被用于考虑游戏中个体的预测行为和实际行为,并研究他们的应用策略.(其实这句话没有什么卯月) 在OI中,博弈论的主要应用是一些经典的模型,以及sg函数,sj定理的应用. 首先我们来看博弈论最为经典的模型之一:Nim游戏 有n堆石子,每次可以从其中任意一堆石子中取出若干块石子(可以取完),不能不取. 最后无石子可取者为输家.假设两人都按最优情况走,问是否先手必胜. 为了计算…
题目链接:https://leetcode.com/problems/predict-the-winner/ 1.暴力递归 当前数组左边界:i,右边界:j: 对于先发者来说,他能取到的最大值是:max(arr[i] + second(arr, i + 1, j), arr[j] + second(arr, i, j - 1)); (arr[i] + 作为后发者,在 i+1 到 j 上取得的值),(arr[j] + 作为后发者,在 i 到 j-1 上取得的值) 中大的一个. 对于后发者来说,他是被…
SG函数先不说,给自己总结下三大博弈.和二进制及黄金分割联系密切,数学真奇妙,如果不用考试就更好了. 1.Bash Game:n个物品,最少取1个,最多取m个,先取完者胜. 给对手留下(m+1)的倍数肯定获胜.若n%(m+1)==0,先手必败. 51nod裸题:1066 #include <iostream> #include <cstdio> using namespace std; int main(){ int t; cin>>t; int n,k; while(…
Problem Description Recently kiki has nothing to do. While she is bored, an idea appears in his mind, she just playes the checkerboard game.The size of the chesserboard is n*m.First of all, a coin is placed in the top right corner(1,m). Each time one…
题目链接:https://www.luogu.org/problem/P1488 其实这道题目我只需要 \(n\) 以及黑色三角形的三个端点编号就可以了. 我们假设在一个 \(n\) 边形中,黑色三角形的端点号分别是 \(a_0, a_1, a_2\) ,且 \(a_0 \lt a_1 \lt a_2\) ,那我其实可以知道: \(a_0 - a_1\) 边外围的三角形个数是 \(b_0 = a_1 - a_0 - 1\) : \(a_1 - a_2\) 边外围的三角形个数是 \(b_1 = a…