郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Summary 众所周知,化学突触传递是不可靠的过程,但是这种不可靠的函数仍然不清楚.在这里,我考虑这样一个假设,即大脑利用突触传递的随机性来进行学习,这类似于达尔文进化论中的基因突变.如果突触是“享乐主义的”,则可能发生这种情况,通过增加它们的囊泡释放或失败的概率来响应全局奖励信号,这取决于立即采取哪种动作.享乐主义突触通过计算对平均奖励梯度的随机近似来学习.它们与突触动态(例如短期促进和抑制)以及树突整合和动作电位生成的复杂性兼容…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 原文链接:https://arxiv.org/pdf/2005.05941.pdf Contents: Abstract Introduction 1 Reinforcement learning with a network of spiking agents 2 Related Work 2.0.1 Hedonism 2.0.2 Learning by reinforcement in spiking neural network…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Contents: ABSTRACT 1. Introduction 2. Biological background 2.1. Spiking neuron models 2.2. Synaptic plasticity 2.2.1. Unsupervised learning 2.2.2. Supervised learning 2.2.3. Reinforcement learning 2.2.4. Delay learning…
Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理跟踪问题.众所周知,CNN在很多视觉领域都是如鱼得水,唯独目标跟踪显得有点“慢热”,这主要是因为CNN的训练需要海量数据,纵然是在ImageNet 数据集上微调后的model 仍然不足以很好的表达要跟踪地物体,因为Tracking问题的特殊性,至于怎么特殊的,且听细细道来. 目标跟踪之所以很少被 C…
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #042eee } span.s1 { } span.s2 { text-decoration: underline } Is objec…
Understanding, generalisation, and transfer learning in deep neural networks FEBRUARY 27, 2017   This is the first in a series of posts looking at the ‘top 100 awesome deep learning papers.’ Deviating from the normal one-paper-per-day format, I’ll ta…
The unstable gradient problem: The fundamental problem here isn't so much the vanishing gradient problem or the exploding gradient problem. It's that the gradient in early layers is the product of terms from all the later layers. When there are many…
论文阅读([CVPR2018]Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision) 本文针对低层视觉问题,提出了一般性的用于解决低层视觉问题的对偶卷积神经网络.作者认为,低层视觉问题,如常见的有超分辨率重建.保边滤波.图像去雾和图像去雨等,这些问题经常涉及到估计目标信号的两个成分:结构和细节.因此,文章提出DualCNN,它包含两个平行的分支来分别恢复结构和细节信息. 具体内容参见https…
译自:http://sebastianruder.com/multi-task/ 1. 前言 在机器学习中,我们通常关心优化某一特定指标,不管这个指标是一个标准值,还是企业KPI.为了达到这个目标,我们训练单一模型或多个模型集合来完成指定得任务.然后,我们通过精细调参,来改进模型直至性能不再提升.尽管这样做可以针对一个任务得到一个可接受得性能,但是我们可能忽略了一些信息,这些信息有助于在我们关心的指标上做得更好.具体来说,这些信息就是相关任务的监督数据.通过在相关任务间共享表示信息,我们的模型在…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2001.01587v1 [cs.NE] 1 Jan 2020 Abstract 脉冲神经网络(SNN)被广泛应用于神经形态设备中,以模拟大脑功能.在这种背景下,SNN的安全性变得重要但缺乏深入的研究,这与深度学习的热潮不同.为此,我们针对SNN的对抗攻击,确认了与ANN攻击不同的几个挑战:i)当前的对抗攻击是基于SNN中以时空模式呈现的梯度信息,这在传统的学习算法中很难获得:ii)在梯度累积过程中,输入的连续梯度与二值脉…