前几天,老师布置了这样一个任务,读取图片并显示,反色后进行显示:进行Sobel算子滤波,然后反色,进行显示:进行Robers算子滤波,然后反色,进行显示.我最后加上了Laplace算子滤波,进行了比较.下面我来讲一下我的实现方法: 一.实现过程 思路:先完成每种函数的算法,接下来是反色函数,最后实现. import cv2 import numpy as np # robert 算子[[-1,-1],[1,1]] def robert_suanzi(img): r, c = img.shape…
实现思路: 1,将传进来的图片矩阵用算子进行卷积求和(卷积和取绝对值) 2,用新的矩阵(与原图一样大小)去接收每次的卷积和的值 3,卷积图片所有的像素点后,把新的矩阵数据类型转化为uint8 注意: 必须对求得的卷积和的值求绝对值:矩阵数据类型进行转化. 完整代码: import cv2 import numpy as np # robert 算子[[-1,-1],[1,1]] def robert_suanzi(img): r, c = img.shape r_sunnzi = [[-1,-1…
http://blog.csdn.net/poem_qianmo/article/details/25560901 本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨)    微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: happylif…
本篇文章中,我们将一起学习OpenCV中边缘检测的各种算子和滤波器——Canny算子,Sobel算子,Laplace算子以及Scharr滤波器.文章中包含了五个浅墨为大家准备的详细注释的博文配套源代码.在介绍四块知识点的时候分别一个,以及最后的综合示例中的一个.文章末尾提供配套源代码的下载. **** 给大家分享一个OpenCv中写代码是节约时间的小常识.其实OpenCv中,不用nameWindow,直接imshow就可以显示出窗口.大家看下文的示例代码就可以发现,浅墨在写代码的时候并没有用na…
1.canny算子 Canny边缘检测算子是John F.Canny于 1986 年开发出来的一个多级边缘检测算法.更为重要的是 Canny 创立了边缘检测计算理论(Computational theory ofedge detection),解释了这项技术是如何工作的.Canny边缘检测算法以Canny的名字命名,被很多人推崇为当今最优的边缘检测的算法. 其中,Canny 的目标是找到一个最优的边缘检测算法,让我们看一下最优边缘检测的三个主要评价标准: 1.低错误率: 标识出尽可能多的实际边缘…
前提:各种算子不完全区分好坏,但根据我实际操作分析得到,有的算子之间效果大相径庭,但有的也很相似,也就是各有各的用法,这里按 Sobel.Laplace.canny三种算子作比较,看其结果: 一.  Sobel.Laplace.canny边缘提取() Sobel算子边缘提取 注释:gray 灰度转换后的图像,前面省略了一部灰度转换的步骤,后面代码会补上 1,表示x方向的差分阶数,1或0------------------------------>如果只写一个1,代表x方向提取--->1,0 1…
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨)    微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: happylifemxy@163.com 写作当前博文时配套使用的OpenCV版本号: 2.4.9 本篇文章中,我们将一起学习Ope…
推荐博文,博客.写得很好,给个赞. Reference Link : http://blog.csdn.net/xiaowei_cqu/article/details/7829481 一阶导数法:梯度算子   对于左图,左侧的边是正的(由暗到亮),右侧的边是负的(由亮到暗).对于右图,结论相反.常数部分为零.用来检测边是否存在. 梯度算子 Gradient operators 函数f(x,y)在(x,y)处的梯度为一个向量: 计算这个向量的大小为: 梯度的方向角为: Sobel算子 sobel算…
http://blog.csdn.net/swj110119/article/details/51777422 一.学习心得: 学习图像处理的过程中,刚开始遇到图像梯度和一些算子的概念,这两者到底是什么关系,又有什么不同,一直困扰着我.后来在看到图像分割这一模块后才恍然大悟,其实图像的梯度可以用一阶导数和二阶偏导数来求解.但是图像以矩阵的形式存储的,不能像数学理论中对直线或者曲线求导一样,对一幅图像的求导相当于对一个平面.曲面求导.对图像的操作,我们采用模板对原图像进行卷积运算,从而达到我们想要…
#include <iostream>#include <opencv2/opencv.hpp> using namespace std;using namespace cv; //Robert算子int Demo_Robert(){ char win1[] = "window1"; char win2[] = "window2"; char win3[] = "window3"; Mat img1, img2, img3…