Spark机器学习2·准备数据(pyspark)】的更多相关文章

准备环境 anaconda nano ~/.zshrc export PATH=$PATH:/anaconda/bin source ~/.zshrc echo $HOME echo $PATH ipython conda update conda && conda update ipython ipython-notebook ipython-qtconsole conda install scipy PYTHONPATH export SPARK_HOME=/Users/erichan…
作者:韩信子@ShowMeAI 大数据技术 ◉ 技能提升系列:https://www.showmeai.tech/tutorials/84 行业名企应用系列:https://www.showmeai.tech/tutorials/63 本文地址:https://www.showmeai.tech/article-detail/296 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 背景 Sparkify 是一个音乐流媒体平台,用户可以获取部分免费音乐资源,也…
分类模型的预测目标是:类别编号 回归模型的预测目标是:实数变量 回归模型种类 线性模型 最小二乘回归模型 应用L2正则化时--岭回归(ridge regression) 应用L1正则化时--LASSO(Least Absolute Shrinkage and Selection Operator) 决策树 不纯度度量方法:方差 0 准备数据 archive.ics.uci.edu/ml/machine-learning-databases/00275/Bike-Sharing-Dataset.z…
友情提示: 本文档根据林大贵的<Python+Spark 2.0 + Hadoop机器学习与大数据实战>整理得到,代码均为书中提供的源码(python 2.X版本). 本文的可以利用pandoc转换为docx文档,点击这里安装下载pandoc后,在终端输入以下命令: pandoc youfilename.md -f markdown -t docx -s -o outputfilename.docx Mllib 决策树二元分类 环境准备 这个阶段包括数据的下载和整理,去除缺失的数据,不符合规范…
Spark机器学习MLlib系列1(for python)--数据类型,向量,分布式矩阵,API 关键词:Local vector,Labeled point,Local matrix,Distributed matrix,RowMatrix,IndexedRowMatrix,CoordinateMatrix,BlockMatrix. 前言:MLlib支持本地向量和存储在单机上的矩阵,当然也支持被存储为RDD的分布式矩阵.一个有监督的机器学习的例子在MLlib里面叫做标签点. 1. 本地向量 一…
Spark机器学习 Day2 快速理解机器学习 有两个问题: 机器学习到底是什么. 大数据机器学习到底是什么. 机器学习到底是什么 人正常思维的过程是根据历史经验得出一定的规律,然后在当前情况下根据这种规律来预测当前的情况下该怎么做,这种过程就是一个机器学习的过程. 我们可以发现,这个过程里有规律和当前的情况.规律就是模型,当前情况就是当前的数据,会根据当前的情况会根据不同的规律来得出不同的结论来驱动下一个行为,就是数据驱动的一种决策方式,这和我们编程用的指令驱动方式是完全不同的. 机器学习是根…
Spark机器学习 Day1 机器学习概述 今天主要讨论个问题:Spark机器学习的本质是什么,其内部构成到底是什么. 简单来说,机器学习是数据+算法. 数据 在Spark中做机器学习,肯定有数据来源,在Spark的最底层肯定是RDD封装,这个和Spark具体是什么版本没有任何关系,版本发展只不过是提供了更多高层的API而已,例如DataFrame.Dataset等,而之所以有DataFrame.Dataset,一般情况下是为了使用统一的优化引擎(抽象程度越高,优化算法和空间越大). RDD有一…
Spark机器学习库现支持两种接口的API:RDD-based和DataFrame-based,Spark官方网站上说,RDD-based APIs在2.0后进入维护模式,主要的机器学习API是spark-ml包中的DataFrame-based API,并将在3.0后完全移除RDD-based API. 在学习了两周Spark MLlib后,准备转向DataFrame-based接口.由于现有的文档资料均是RDD-based接口,于是便去看了看Spark MLlib的源码.DataFrame-…
Spark机器学习之协同过滤算法 一).协同过滤 1.1 概念 协同过滤是一种借助"集体计算"的途径.它利用大量已有的用户偏好来估计用户对其未接触过的物品的喜好程度.其内在思想是相似度的定义 1.2 分类 1.在基于用户的方法的中,如果两个用户表现出相似的偏好(即对相同物品的偏好大体相同),那就认为他们的兴趣类似.要对他们中的一个用户推荐一个未知物品, 便可选取若干与其类似的用户并根据他们的喜好计算出对各个物品的综合得分,再以得分来推荐物品.其整体的逻辑是,如果其他用户也偏好某些物品,…
上次我们讲过<Spark机器学习(上)>,本文是Spark机器学习的下部分,请点击回顾上部分,再更好地理解本文. 1.机器学习的常见算法 常见的机器学习算法有:l   构造条件概率:回归分析和统计分类:l   人工神经网络:l   决策树:l   高斯过程回归:l   线性判别分析:l   最近邻居法:l   感知器:l   径向基函数核:l   支持向量机:l   通过再生模型构造概率密度函数:l   最大期望算法:l   graphical model :包括贝叶斯网和 Markov 随机…