本文只介绍如何快速的使用CRF++做序列标注,对其中的原理和训练测试参数不做介绍. 官网地址:CRF++: Yet Another CRF toolkit 主要完成如下功能: 输入 -> "周杰伦是谁" 输出 -> "[周杰伦:artist]是谁" 以下所有内容均为原创,如果觉得本教程不错的话,点个赞再走呗~ 一.资源准备 下载链接中的内容: 链接:https://pan.baidu.com/s/16iw3WBSHI1U5U1G_xbikDA 密码:cf…
传统 CRF 中的输入 X 向量一般是 word 的 one-hot 形式,前面提到这种形式的输入损失了很多词语的语义信息.有了词嵌入方法之后,词向量形式的词表征一般效果比 one-hot 表示的特征要好.本文先主要介绍了LSTM.词嵌入与条件随机场,然后再从序列标注问题探讨 BiLSTM与CRF等的应用. Word Embedding 和 LSTM Word Embedding 简单的说是将高维空间(空间的维度通常是词典的大小)中的表示 word 的高维 one-hot 向量映射到低维(几十维…
原文地址:http://www.360doc.com/content/16/0322/07/31263000_544210096.shtml 随着开发运维一体化的DevOps运动在国内外蓬勃发展,DevOps相关工具也呈现热闹趋势,在这个言必谈如何实施落地引入工具.建设平台的大环境下,我们今天也来盘点一下DevOps相关工具. 先来看一下业界对DevOps工具的各种分类介绍. 一.DevOps应用交付工具链   ElasticBox是国外一个云应用管理工具,主要用于实现云应用生命周期的可视化管理…
目录 简介 隐马尔可夫模型(HMM) 条件随机场(CRF) 马尔可夫随机场 条件随机场 条件随机场的特征函数 CRF与HMM的对比 维特比算法(Viterbi) 简介 序列标注(Sequence Tagging)是一个比较简单的NLP任务,但也可以称作是最基础的任务.序列标注的涵盖范围是非常广泛的,可用于解决一系列对字符进行分类的问题,如分词.词性标注.命名实体识别.关系抽取等等. 对于分词相信看过之前博客的朋友都不陌生了,实际上网上已经有很多开源的中文分词工具,jieba.pkuseg.pyh…
这是一个基于CRF的中文依存句法分析器,内部CRF模型的特征函数采用 双数组Trie树(DoubleArrayTrie)储存,解码采用特化的维特比后向算法.相较于<最大熵依存句法分析器的实现>,分析速度翻了一倍,达到了1262.8655 sent/s 开源项目 本文代码已集成到HanLP中开源项目中,最新hanlp1.7版本已经发布 CRF简介 CRF是序列标注场景中常用的模型,比HMM能利用更多的特征,比MEMM更能抵抗标记偏置的问题.在生产中经常使用的训练工具是CRF++,关于CRF++的…
三个月之前 NLP 课程结课,我们做的是命名实体识别的实验.在MSRA的简体中文NER语料(我是从这里下载的,非官方出品,可能不是SIGHAN 2006 Bakeoff-3评测所使用的原版语料)上训练NER模型,识别人名.地名和组织机构名.尝试了两种模型:一种是手工定义特征模板后再用CRF++开源包训练CRF模型:另一种是最近两年学术界比较流行的 BiLSTM-CRF 模型. 小白一枚,简单介绍一下模型和实验结果,BiLSTM-CRF 模型的数据和代码在GitHub上. 命名实体识别(Named…
1.CRF++的详细解析 完成的是学习和解码的过程:训练即为学习的过程,预测即为解码的过程. 模板的解析: 具体参考hanlp提供的: http://www.hankcs.com/nlp/the-crf-model-format-description.html Unigram和Bigram模板分别生成CRF的状态特征函数和转移特征函数.其中是标签,x是观测序列,i是当前节点位置.每个函数还有一个权值. 注意:一般定义CRF++的模板只定义Unigram即为CRF的状态特征函数(对于观测状态不同…
http://blog.csdn.net/scotfield_msn/article/details/60339415 在TensorFlow (RNN)深度学习下 双向LSTM(BiLSTM)+CRF 实现 sequence labeling  双向LSTM+CRF跑序列标注问题 源码下载 去年底样子一直在做NLP相关task,是个关于序列标注问题.这 sequence labeling属于NLP的经典问题了,开始尝试用HMM,哦不,用CRF做baseline,by the way, 用的CR…
一.模型框架图 二.分层介绍 1)ALBERT层 albert是以单个汉字作为输入的(本次配置最大为128个,短句做padding),两边分别加上开始标识CLS和结束标识SEP,输出的是每个输入word的embedding.在该框架中其实主要就是利用了预训练模型albert的词嵌入功能,在此基础上fine-tuning其后面的连接参数,也就是albert内部的训练参数不参与训练. 2)BiLSTM层 该层的输入是albert的embedding输出,一般中间会加个project_layer,保证…
一.搭建简单的CNN做序列标注代码 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt TIME_STEPS = 15# backpropagation through time 的time_steps BATCH_SIZE = 1#50 INPUT_SIZE = 1 # x数据输入size LR = 0.05 # learning rate num_tags = 2 # 定义一个生成数据的 get…