51nod 1119 组合数,逆元】的更多相关文章

http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119 1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 收藏 关注 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果.   Input 第1行,2个数M,N,中间用空格隔开.(2 <= m,n <= 10000…
题目:1119 机器人走方格 V2 思路:求C(m+n-2,n-1) % 10^9 +7       (2<=m,n<= 1000000) 在求组合数时,一般都通过双重for循环c[i][j] = c[i-1][j] + c[i-1][j-1]直接得到. 但是m,n都很大时,就会超时. 利用公式:C(n,r) = n! / r! *(n-r)!  与  a/b = x(mod M)  ->  a * (b ^ (M-2)) =x (mod M)     进行求解 费马小定理:对于素数 M…
题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k ,n ,m,每两个整数之间用一个空格隔开. 输出格式: 输出共1 行,包含一个整数,表示所求的系数,这个系数可能很大,输出对10007 取模后的结果. 输入输出样例 输入样例#1: 1 1 3 1 2 输出样例#1: 3 说明 [数据范围] 对于30% 的数据,有 0 ≤k ≤10 : 对于50% 的…
hannnnah_j’s Biological Test Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 802    Accepted Submission(s): 269 Problem Description hannnnah_j is a teacher in WL High school who teaches biolog…
It is said that a dormitory with 6 persons has 7 chat groups ^_^. But the number can be even larger: since every 3 or more persons could make a chat group, there can be 42 different chat groups. Given N persons in a dormitory, and every K or more per…
题目链接 Problem Description As to a permutation p1,p2,⋯,pn from 1 to n, it is uncomplicated for each 1≤i≤n to calculate (li,ri) meeting the condition that min(pL,pL+1,⋯,pR)=pi if and only if li≤L≤i≤R≤ri for each 1≤L≤R≤n. Given the positive integers n, (…
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1256 给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的.   Input 输入2个数M, N中间用空格分隔(1 <= M < N <= 10^9) Output 输出一个数K,满足0 < K < N且K * M % N = 1,…
给定长度为n的数组a,定义一次操作为: 1. 算出长度为n的数组s,使得si= (a[1] + a[2] + ... + a[i]) mod 1,000,000,007: 2. 执行a = s: 现在问k次操作以后a长什么样. 输入描述: 第一行两个整数n,k(1 <= n <= 2000, 0 <= k <= 1,000,000,000): 第二行n个整数表示a数组(0 <= ai<= 1,000,000,000). 输出描述:一行n个整数表示答案. 示例1 输入 3…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6333 题目: 题意:求C(n,0)+C(n,1)+……+C(n,m)的值. 思路:由于t和n数值范围太大,所以此题查询复杂度不能太高,由组合数的将前k项求和可以推出,从而可以转换成莫队的区间查询,将n当成l,m当成r即可.此题需要注意,对于求组合数得用o(1)的方法求,也就是阶乘相除的方法,对于分母我们得求逆元,因而借助欧拉定理. 代码实现如下: #include <set> #include &…
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1161 显然,题目可以转化为矩阵求解,但复杂度显然时空都不允许,我们如果自己把这个N*N矩阵的前几项列出来的话就会发现和杨辉三角的某一部分相似, 对照一下发现这个矩阵的第一行对应的就是杨辉三角的某一斜列,依次向下递减,也就是说我们只要知道这几个组合数,就能推导出来这个矩阵. 对于每一个K,对应的矩阵首行元素就是 :  C(k-1,0),C(k,1),C(k+1,2)...…