rnnlm学习】的更多相关文章

rnn-lm: 1.论文 2.公式推导 2.1 http://blog.csdn.net/a635661820/article/details/44462315 3. 工具 lstm-lm 1. 论文 2. 公式 3. 工具:http://www-i6.informatik.rwth-aachen.de/web/Software/rwthlm.php…
前一篇文章  用 CNTK 搞深度学习 (一) 入门    介绍了用CNTK构建简单前向神经网络的例子.现在假设读者已经懂得了使用CNTK的基本方法.现在我们做一个稍微复杂一点,也是自然语言挖掘中很火的一个模型: 用递归神经网络构建一个语言模型. 递归神经网络 (RNN),用图形化的表示则是隐层连接到自己的神经网络(当然只是RNN中的一种): 不同于普通的神经网络,RNN假设样例之间并不是独立的.例如要预测“上”这个字的下一个字是什么,那么在“上”之前出现过的字就很重要,如果之前出现过“工作”,…
标题:Efficient Estimation of Word Representations in Vector Space 作者:Tomas Mikolov 发表于:ICLR 2013 主要内容: 在NLP中,每一个词语都表示称实数向量的形式(称为word embedding or word representation).通常词语的实数向量用神经网络进行训练得到,如Bengio在2003年的工作,以及在此基础上的改进,如:用递归的神经网络进行训练.不过这些方法计算复杂度较高,对词表大小.训…
神经概率语言模型,内容分为三块:问题,模型与准则,实验结果.[此节内容未完待续...] 1,语言模型问题 语言模型问题就是给定一个语言词典包括v个单词,对一个字串做出二元推断,推断其是否符合该语言表达习惯.也就是的取值为0或者为1. 概率语言模型放松了对取值的限制,让其在0~1之间取值(语言模型 v.s 概率语言模型),而且全部的字串的概率之和为1.维基百科对于概率语言模型的解释为:是借由一个概率分布,而指派概率给字词所组成的字串.可是须要注意的是直接对进行求其概率分布是不现实的,由于理论上这样…
神经结构进步.GPU深度学习训练效率突破.RNN,时间序列数据有效,每个神经元通过内部组件保存输入信息. 卷积神经网络,图像分类,无法对视频每帧图像发生事情关联分析,无法利用前帧图像信息.RNN最大特点,神经元某些输出作为输入再次传输到神经元,可以利用之前信息. xt是RNN输入,A是RNN节点,ht是输出.对RNN输入数据xt,网络计算得输出结果ht,某些信息(state,状态)传到网络输入.输出ht与label比较得误差,用梯度下降(Gradient Descent)和Back-Propag…
自然语言处理,语音处理.文本处理.语音识别(speech recognition),让计算机能够"听懂"人类语音,语音的文字信息"提取". 日本富国生命保险公司花170万美元安装人工智能系统,客户语言转换文本,分析词正面或负面.智能客服是人工能智能公司研究重点.循环神经网络(recurrent neural network,RNN)模型. 模型选择.每一个矩形是一个向量,箭头表示函数.最下面一行输入向量,最上面一行输出向量,中间一行RNN状态.一对一,没用RNN,如…
×下面资源个人全都跑了一遍,不会出现仅是字符而无法运行的状况,运行环境: Geoffrey Hinton在多次访谈中讲到深度学习研究人员不要仅仅只停留在理论上,要多编程.个人在学习中也体会到单单的看理论到头来还是一头雾水,只有不断和编程结合,才能检验自己是否掌握了这门知识.但是作为初学者应先以跑通理论为第一要义,所以可以使用有关框架,降低入门难度,避免重复造轮子. 一.TensorFlow 资源地址: 资源介绍: 资源目录: 二.PyTorch 资源地址: 资源介绍: 这个资源为深度学习研究人员…
catalogue . 个人理解 . 基本使用 . MNIST(multiclass classification)入门 . 深入MNIST . 卷积神经网络:CIFAR- 数据集分类 . 单词的向量表示(Vector Representations of Words) . 循环神经网络(RNN).LSTM(Long-Short Term Memory, LSTM) . 用深度学习网络搭建一个聊天机器人 0. 个人理解 在学习的最开始,我在这里写一个个人对deep leanring和神经网络的粗…
背景 近几年以深度学习技术为核心的人工智能得到广泛的关注,无论是学术界还是工业界,它们都把深度学习作为研究应用的焦点.而深度学习技术突飞猛进的发展离不开海量数据的积累.计算能力的提升和算法模型的改进.本文主要介绍深度学习技术在文本领域的应用,文本领域大致可分为4个维度:词.句子.篇章.系统级应用. 词.分词方面,从最经典的前后向匹配到条件随机场(Conditional Random Field,CRF)序列标注,到现在Bi-LSTM+CRF模型,已经不需要设计特征,从字粒度就能做到最好的序列标注…
Minerva:一个可扩展的高效的深度学习训练平台 zoerywzhou@gmail.com http://www.cnblogs.com/swje/ 作者:Zhouwan  2015-12-1 声明 1)本文是关于Minerva简介的一篇译文.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主删除. 3)本人刚接触深度学习方向,专业术语了解甚少,斗胆翻译了这篇文…