miou】的更多相关文章

首先看到训练时会在命令行里输出 loss 和 total loss,那是怎么做到的呢,通过分析 train.py 源码,看到如下代码 total_loss = tf.cond( should_log, lambda: tf.Print(total_loss, [total_loss], 'Total loss is :'), lambda: total_loss) summaries.append(tf.summary.scalar('total_loss', total_loss)) 是把 t…
代码参考博客原文: https://blog.csdn.net/jiongnima/article/details/84750819 在原文和原文的引用里,找到了关于mIoU详尽的解释.这里重点解析 fast_hist(a, b, n) 这个函数的代码. 生成混淆矩阵的代码: #设标签宽W,长H def fast_hist(a, b, n):#a是转化成一维数组的标签,形状(H×W,):b是转化成一维数组的标签,形状(H×W,):n是类别数目,实数(在这里为19) ''' 核心代码 ''' k…
1. TP TN FP FN ​ GroundTruth 预测结果 TP(True Positives): 真的正样本 = [正样本 被正确分为 正样本] TN(True Negatives): 真的负样本 = [负样本 被正确分为 负样本] FP(False Positives): 假的正样本 = [负样本 被错误分为 正样本] FN(False Negatives):假的负样本 = [正样本 被错误分为 负样本] 2. Precision(精度)和 Recall(召回率) \(Precisi…
详解计算miou的代码以及混淆矩阵的意义 miou的定义 ''' Mean Intersection over Union(MIoU,均交并比):为语义分割的标准度量.其计算两个集合的交集和并集之比. 在语义分割的问题中,这两个集合为真实值(ground truth)和预测值(predicted segmentation). 这个比例可以变形为正真数(intersection)比上真正.假负.假正(并集)之和.在每个类上计算IoU,之后平均. 对于21个类别,分别求IOU: 例如,对于类别1的I…
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABRQAAAQ0CAYAAAAPPZBqAAAMFGlDQ1BJQ0MgUHJvZmlsZQAASImVlw…
UC Berkeley的Deepak Pathak 使用了一个具有图像级别标记的训练数据来做弱监督学习.训练数据中只给出图像中包含某种物体,但是没有其位置信息和所包含的像素信息.该文章的方法将image tags转化为对CNN输出的label分布的限制条件,因此称为 Constrained convolutional neural network (CCNN). 该方法把训练过程看作是有线性限制条件的最优化过程: 其中是一个隐含的类别分布,是CNN预测的类别分布.目标函数是KL-divergen…
这篇文章的主要贡献点在于: 1.实验证明仅仅利用图像整体的弱标签很难训练出很好的分割模型: 2.可以利用bounding box来进行训练,并且得到了较好的结果,这样可以代替用pixel-level训练中的ground truth: 3.当我们用少量的pixel-level annotations和大量的图像整体的弱标签来进行半监督学习时,其训练效果可和全部使用pixel-level annotations差不多: 4.利用额外的强弱标签可以进一步提高效果. 这是用image-level lab…
以最佳的101 layer的ResNet-DUC为基础,添加HDC,实验探究了几种变体: 无扩张卷积(no dilation):对于所有包含扩张卷积,设置r=1r=1 扩张卷积(dilation Conv ):对于所有包含扩张卷积,将2个block和为一组,设置第一个block的r=2r=2,第二个block的r=1r=1 Dilation-RF:对于res4bres4b包含了23个blocks,使用的r=2r=2,设置3个block一组,r=1,2,3r=1,2,3.对于最后两个block,设…
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation 发表于2016年,作者 Vijay Badrinarayanan, Alex Kendall, Roberto Cipolla, Senior Member 模型结构: 创新点: 在 encoder 部分的最大池化操作时记录了最大值所在位置(索引),然后在 decoder 时通过对应的池化索引实现非线性上采样,这样在上采样阶段就无需学习…
一.预处理数据部分 1.创建 tfrecord(修改 deeplab\ dateasets\ build_data.py) 模型本身是把一张张 jpg 和 png 格式图片读到一个 Example 里,写入 tfrecord.但我是一个大的 tif 文件,需要把几万像素的图片分割成小块写入到一个 tfrecord 文件里,而 tf 没有对 tif 格式的图片的解码,因此不能直接使用原来的 build_data.py. 先用 osgeo 里的 gdal 读取 tif 文件,得到大 tif 的 np…