arc076f F - Exhausted?】的更多相关文章

2017国家集训队作业[arc076d/f][Exhausted?] 题意: ​ 有\(N\)个人,\(M\)把椅子,给出\(...L_i.R_i\)表示第\(i\)个人可以选择编号为\(1\sim L_i\)和\(R_i\sim M\)的椅子,求至少要加多少张椅子才能让每人都有椅子坐?(\(N,M\le2*10^5\)) 题解: ​ 场上看到这道题,woc,这不是sb的线段树或前缀和优化网络流建边二分图匹配吗?(这沙茶= =) ​ 听dcx说,这题网络流建出来是分层图,流量是\(INF\)的可…
题意: n个人抢m个凳子,第i个人做的位置必须小于li或大于ri,问最少几个人坐不上. 这是一个二分图最大匹配的问题,hall定理可以用来求二分图最大匹配. 关于hall定理及证明,栋爷博客里有:http://blog.csdn.net/werkeytom_ftd/article/details/65658944 可以推出答案为$max\{|x|-Γ(X)\}$,x为左侧点的一个子集,Γ(X)为这些点能到达的右侧点的集合. 证明: 因为二分图有完美匹配的充要条件是对于所有的x都有Γ(X)>=|x…
---题面--- 题目大意: 有n个人,m个座位,每个人可以匹配的座位是[1, li] || [ri, m],可能有人不需要匹配座位(默认满足),问最少有多少人不能被满足. 题解: 首先可以看出这是一个二分图匹配,根据hall定理,我们只需要求出max(人的子集大小 -  被选出的人可以选的座位集合大小). 但是枚举人的复杂度太高,所以考虑枚举座位集合,因为每个人的可选区间都是一段前缀or后缀,因此要表达一个合法的座位集合,我们只需要所有人中最右边的li和最左边的ri即可. 如图所示: 因此这个…
霍尔定理 + 线段树? 咱学学霍尔定理... 霍尔定理和二分图完美匹配有关,具体而言,就是定义了二分图存在完美匹配的充要条件: 不妨设当前二分图左端集合为 X ,右端集合为 Y ,X 与 Y 之间的边集为 E 令 \(\omega(x)\) 表示在 Y 中能通过 E 与 x 中元素相连的元素数量,那么 $\forall x\in X, |x| \le |\omega(x)| $ 为 X 与 Y 存在完美匹配的充要条件... 然后咱发现,多加上 t 个人的话,也就是必然会让 \(|\omega(x…
传送门 sxy题解: //Achen #include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> #include<vector> #include<queue> #include<cmath> #define For(i,a,b) for(int i=(a);i<=(b);i++)…
题面 题目大意: 给你\(m\)张椅子,排成一行,告诉你\(n\)个人,每个人可以坐的座位为\([1,l]\bigcup[r,m]\),为了让所有人坐下,问至少还要加多少张椅子. Solution: 为什么加椅子?我们可以在最左边或最右边一直加直到人人都有座位. 首先这道题目抽象成二分图很简单,然后我们可以只要求解出人与座位的最大匹配是多少,总人数减去即可,但跑二分图最大匹配显然会超时,我们就可以往霍尔定理方面想. 然后你还需要知道一个霍尔定理推论:假设某个人的集合为\(X\),这个集合所对应的…
题目链接 Problem Statement There are M chairs arranged in a line. The coordinate of the i-th chair ($$$1≤i≤M$$$) is $$$i$$$.N people of the Takahashi clan played too much games, and they are all suffering from backaches. They need to sit in chairs and re…
题意 N个人抢M个椅子,M个椅子排成一排 ,第i个人只能坐[1,Li]∪[Ri,M],问最多能坐多少人 $i$人连边向可以坐的椅子构成二分图,题意即是求二分图最大完美匹配,由霍尔定理,答案为$max(|X|-\omega(X))$,$X$为人的集合,$\omega(X)$可以表示为$[1,l] \cup[r,M]$,所以可以枚举$\omega(X)$也就是$(l,r)$,求出最大的$|X|$,也就是满足$L_i\le l \land r \le R_i$的$i$的数量,也就是平面上以$(l,r)…
hall定理大概是匈牙利的理论基础吧 hall定理的内容:二分图\(G\)的的左部点点集为\(\rm X\),右部点点集为\(\rm Y\),设\(|\rm X|\leq |Y|\),则二分图\(G\)存在完美匹配,即匹配个数为\(|\rm X|\)当且仅当,对于\(\rm X\)的任一子集\(\rm X'\),满足\(|\rm X'|\leq |\rm Nb(X')|\),\(\rm Nb(X')\)为\(\rm X'\)的邻居点集 必要性显然,考虑证明其充分性. 使用反证法,对于一张满足ha…
在湖蓝跟衡水大佬们打的第二场atcoder,不知不觉一星期都过去了. 任意门 C - Reconciled? 题意:n只猫,m只狗排队,猫与猫之间,狗与狗之间是不同的,同种动物不能相邻排,问有多少种方案. #include<cstdio> #include<algorithm> using namespace std; ; ; int main(){ scanf("%d%d",&n,&m); if (n<m) swap(n,m); ) ;…