2023.2.26【模板】扩展Lucas定理】的更多相关文章

J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Dr. Ceizenp'ok from planet i1c5l became famous across the whole Universe thanks to his recent discovery — the Ceizenp…
扩展Lucas定理模板题(貌似这玩意也只能出模板题了吧~~本菜鸡见识鄙薄,有待指正) 原理: https://blog.csdn.net/hqddm1253679098/article/details/82897638 https://blog.csdn.net/clove_unique/article/details/54571216 感觉扩展Lucas定理和Lucas定理的复杂程度差了不止一个档次,用到了一大堆莫名其妙的函数. 另外谁能告诉我把一个很大的组合数对一个非质数取模有什么卵用 #i…
首先说下啥是lucas定理: $\binom n m \equiv \binom {n\%P} {m\%P} \times \binom{n/P}{m/P} \pmod P$ 借助这个定理,求$\binom n m$时,若$P$较小,且$n,m$非常大时,我们就可以用这个定理要降低复杂度. 但是这个定理有一些限制,比如说要求$p$是质数,遇到一些毒瘤出题人不太好应对. 当$P$不是质数时,这时就要用到一个叫做扩展lucas定理的东西. 令$P=\prod p_i^{k_i}$. 我们发现,如果对…
题意:n件礼物,送给m个人,每人的礼物数确定,求方案数. 解题关键:由于模数不是质数,所以由唯一分解定理, $\bmod  = p_1^{{k_1}}p_2^{{k_2}}......p_s^{{k_s}}$ 然后,分别求出每个组合数模每个$p_i^{{k_i}}$的值,这里可以用扩展lucas定理求解,(以下其实就是扩展lucas定理的简略证明) 关于$C_n^m\% {p^k}$, $C_n^m = \frac{{n!}}{{m!(n - m)!}}$, 我们以$n=19,p=3,k=2$为…
1.Lucas定理 首先给出式子:\(C_n^m\%p = C_{\lfloor\frac{n}{p}\rfloor}^{\lfloor\frac{m}{p}\rfloor} * C_{n\%p}^{m\%p}\% p\),其中p为质数. 这里给出证明--证明是我在luogu上看到的lance1ot大佬的证明,个人认为是写的很好的,在此还要做一下补充. 首先,对于质数p,可以保证\(C_p^i(1 <= i <= p-1) \equiv 0(mod\ p)\),这个比较显然,因为组合数一定是整…
http://codeforces.com/gym/100633/problem/J 其实这个解法不难学的,不需要太多的数学.但是证明的话,我可能给不了严格的证明.可以看看这篇文章 http://www.cnblogs.com/jianglangcaijin/p/3446839.html   膜拜 #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include…
[笔记] 扩展\(Lucas\)定理 \(Lucas\)定理:\(\binom{n}{m} \equiv \binom{n/P}{m/P} \binom{n \% P}{m \% P}\pmod{P}\)\((P\ is \ prime)\) Theory 那么如果\(p\)不是一个质数怎么办? 当我们需要计算\(C_n^m\mod p\),其中\(p = p_1^{q_1}\times p_2^{q_2}\times ...\times p_k^{q_k}\),我们可以求出:\(C_n^m\e…
可以先做这个题[SDOI2010]古代猪文 此算法和LUCAS定理没有半毛钱关系. [模板]扩展卢卡斯 不保证P是质数. $C_n^m=\frac{n!}{m!(n-m)!}$ 麻烦的是分母. 如果互质就有逆元了. 所以可以考虑把分子分母不互质的数单独提出来处理. 然鹅P太一般,直接处理要考虑的东西太多. 我们不妨令$p=p_1^{q_1}*p_2^{q_2}*...*p_k^{q_k}$ 对每一个$p_i^{q_i}$分别求解(不妨叫这个数为$pk$)(这样会容易很多) 即求ai满足:$\fr…
题意:给定方程x1+x2+....xn=m,每个x是正整数.但是对前n1个数做了限制x1<=a1,x2<=a2...xn1<=an1,同时对第n1+1到n1+n2个数也做了限制xn1+1>=an1+1....xn1+n2>=an1+n2,输出方程解个数. 解法:首先如果对数字没有任何要求(应该是只要求是非负数)的话,答案就是C(n+m+1,m+1)原理是隔板法.但是此题有各种限制,我们想办法解决限制使得答案往无限制上面靠. 首先是解决要正整数,那么每个数字减一即可,就是m-=…
(1)Lucas定理:p为素数,则有: (2)证明: n=(ak...a2,a1,a0)p = (ak...a2,a1)p*p + a0 =  [n/p]*p+a0,m=[m/p]*p+b0其次,我们知道,对任意质数p有(1+x)^p=1+(x^p)(mod p) .我们只要证明这个式子:C(n,m)=C([n/p],[m/p]) * C(a0,b0)(mod p),那么就可以用归纳法证明整个定理.对于模p而言,我们有下面的式子成立: 上式左右两边的x的某项x^m(m<=n)的系数对模p同余.其…