对一些常用RDD算子的总结】的更多相关文章

4.      RDD编程API 4.1 RDD的算子分类 Transformation(转换):根据数据集创建一个新的数据集,计算后返回一个新RDD:例如:一个rdd进行map操作后生了一个新的rdd. Action(动作):对rdd结果计算后返回一个数值value给驱动程序,或者把结果存储到外部存储系统(例如HDFS)中: 例如:collect算子将数据集的所有元素收集完成返回给驱动程序. 4.2 Transformation RDD中的所有转换都是延迟加载的,也就是说,它们并不会直接计算结…
Spark-RDD编程常用转换算子代码实例 Spark rdd 常用 Transformation 实例: 1.def map[U: ClassTag](f: T => U): RDD[U]   将函数应用于RDD的每一元素,并返回一个新的RDD package top.ruandb import org.apache.spark.{SparkConf, SparkContext} object RddTest extends App{ val sparkConf = new SparkConf…
RDD算子 #常用Transformation(即转换,延迟加载) #通过并行化scala集合创建RDD val rdd1 = sc.parallelize(Array(1,2,3,4,5,6,7,8)) #查看该rdd的分区数量 rdd1.partitions.length val rdd1 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)) val rdd2 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)).map…
一.RDD概述 1.什么是RDD RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 2.RDD属性 1)一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片都会被一个计算任务处…
一.常用Actoin算子 (reduce .collect .count .take .saveAsTextFile . countByKey .foreach ) collect:从集群中将所有的计算结果获取到本地内存,然后展示 take:从集群中将一部分的计算结果获取到本地内存,然后展示 rdd.collect rdd.take(n) 二.内存管理 1.RDD内存持久化 Spark非常重要的一个功能特性就是可以将RDD持久化在内存中. 当对RDD执行持久化操作时, 每个节点都会将自己操作的R…
map 产生的键值对是tupple,      split分隔出来的是数组 一.常用Transformation算子 (map  .flatMap .filter .groupByKey .reduceByKey .sortByKey  .join .cogroup ) JAVA: package day2; import java.util.Arrays; import java.util.List; import org.apache.spark.SparkConf; import org.…
一.RDD算子补充 1.mapPartitions         mapPartitions的输入函数作用于每个分区, 也就是把每个分区中的内容作为整体来处理.   (map是把每一行) mapPartitions一次处理一个分区的所有数据,而map算子一次处理分区中的一条数据,所以mapPartitions处理数据的速度比map快,如果RDD分区的数据很庞大,用mapPartitions容易造成内存溢出, 如果RDD分区数据量小,从而提升速度的角度考虑,可以使用mapPartitions算子…
08.Spark常用RDD变换 8.1 概述 Spark RDD内部提供了很多变换操作,可以使用对数据的各种处理.同时,针对KV类型的操作,对应的方法封装在PairRDDFunctions trait中,KV类的RDD可以被隐式转换成PairRDDFunctions类型.其中很多的操作,和传统的SQL语句中的操作是对应的,只是底层换成Spark的MR计算. 8.2 常用变换 操作 解释 map 变换,将输入的每个元素进行响应操作,生成新的元素 flatMap 压扁,取出具有可迭代性质的组件中每个…
RDD:弹性分布式数据集, 是分布式内存的一个抽象概念 RDD:1.一个分区的集合, 2.是计算每个分区的函数 ,    3.RDD之间有依赖关系 4.一个对于key-value的RDD的Partitioner 5.一个存储存取每个Partition的优先位置的列表 RDD算子: Transformations:不会立即执行,只是记录这些操作 Actions:计算只有在action被提交的时候才被触发. RDD依赖关系: 窄依赖指的是每一个父RDD的Partition最多被子RDD的一个Part…
SparkContext SparkContext 是在 spark 库中定义的一个类,作为 spark 库的入口点: 它表示连接到 spark,在进行 spark 操作之前必须先创建一个 SparkContext 的实例,并且只能创建一个: 利用 SparkContext 实例创建的对象都是 RDD,这是相对于 SparkSession 说的,因为 它创建的对象都是 DataFrame: 创建 sc class SparkContext(__builtin__.object): def __i…