C++编程笔记(GPU并行编程)】的更多相关文章

前言 CPU 的并行编程技术,也是高性能计算中的热点,也是今后要努力学习的方向.那么它和 GPU 并行编程有何区别呢? 本文将做出详细的对比,分析各自的特点,为将来深入学习 CPU 并行编程技术打下铺垫. 区别一:缓存管理方式的不同 GPU:缓存对程序员不透明,程序员可根据实际情况操纵大部分缓存 (也有一部分缓存是由硬件自行管理). CPU:缓存对程序员透明.应用程序员无法通过编程手段操纵缓存. 区别二:指令模型的不同 GPU:采用 SIMT - 单指令多线程模型,一条指令配备一组硬件,对应32…
前言 CPU 的并行编程技术,也是高性能计算中的热点,也是今后要努力学习的方向.那么它和 GPU 并行编程有何区别呢? 本文将做出详细的对比,分析各自的特点,为将来深入学习 CPU 并行编程技术打下铺垫. 区别一:缓存管理方式的不同 GPU:缓存对程序员不透明,程序员可根据实际情况操纵大部分缓存 (也有一部分缓存是由硬件自行管理). CPU:缓存对程序员透明.应用程序员无法通过编程手段操纵缓存. 区别二:指令模型的不同 GPU:采用 SIMT - 单指令多线程模型,一条指令配备一组硬件,对应32…
前言 GPU 是如何实现并行的?它实现的方式较之 CPU 的多线程又有什么分别?本文将做一个较为细致的分析. GPU 并行计算架构 GPU 并行编程的核心在于线程,一个线程就是程序中的一个单一指令流,一个个线程组合在一起就构成了并行计算网格,成为了并行的程序,下图展示了多核 CPU 与 GPU 的计算网格: 二者的区别将在后面探讨. 下图展示了一个更为细致的 GPU 并行计算架构: 该图表示,计算网格由多个流处理器构成,每个流处理器又包含 n 多块. 下面对 GPU 计算网格中的一些概念做细致分…
前言 GPU 是如何实现并行的?它实现的方式较之 CPU 的多线程又有什么分别? 本文将做一个较为细致的分析. GPU 并行计算架构 GPU 并行编程的核心在于线程,一个线程就是程序中的一个单一指令流,一个个线程组合在一起就构成了并行计算网格,成为了并行的程序,下图展示了多核 CPU 与 GPU 的计算网格: 二者的区别将在后面探讨. 下图展示了一个更为细致的 GPU 并行计算架构: 该图表示,计算网格由多个流处理器构成,每个流处理器又包含 n 多块. 下面进一步对 GPU 计算网格中的一些概念…
前言 在用 CUDA 对 GPU 进行并行编程的过程中,除了需要对线程架构要有深刻的认识外,也需要对存储系统架构有深入的了解. 这两个部分是 GPU 编程中最为基础,也是最为重要的部分,需要花时间去理解吸收,加深内功. 了解 GPU 存储系统架构的意义 CUDA 编程架构的设计思路本身也就是让程序员去使用缓存,而不是让缓存像 CPU 编程结构那样对程序员透明. 通过对所使用存储结构的优化,能够让程序的并行后的效果得到很大提高. 因此,这个问题是需要我们在开发全程中考虑的. 第一层:寄存器 每个流…
前言 在用 CUDA 对 GPU 进行并行编程的过程中,除了需要对线程架构要有深刻的认识外,也需要对存储系统架构有深入的了解. 这两个部分是 GPU 编程中最为基础,也是最为重要的部分,需要花时间去理解吸收,加深内功. 了解 GPU 存储系统架构的意义 CUDA 编程架构的设计思路本身也就是让程序员去使用缓存,而不是让缓存像 CPU 编程结构那样对程序员透明. 通过对所使用存储结构的优化,能够让程序的并行后的效果得到很大提高. 因此,这个问题是需要我们在开发全程中考虑的. 第一层:寄存器 每个流…
转载自:http://blog.sina.com.cn/s/blog_a43b3cf2010157ph.html 编写利用GPU加速的并行程序有多种方法,归纳起来有三种: 1.      利用现有的GPU函数库. Nvidia 的CUDA工具箱中提高了免费的GPU加速的快速傅里叶变换(FFT).基本线性代数子程序(BLAST).图像与视频处理库(NPP).用户只要把源代码中CPU版本的快速傅里叶变换.快速傅里叶变换和图像与视频处理库替换成相应的GPU版,即可得到性能加速.除了Nvidia提供的函…
分布式并行编程用于解决大规模数据的高效处理问题.分布式程序运行在大规模计算机集群上,集群中计算机并行执行大规模数据处理任务,从而获得海量计算能力. MapReduce是一种并行编程模型,用于大规模数据集的并行运算,那么MapReduce又是如何进行并行编程的呢? MapReduce采用“分而治之”的策略,将存储在分布式文件系统的大数据集切分成独立小数据块(即Split,分片),这些分片可以被多个Map任务并行处理.MapReduce强调“计算向数据靠拢”而非“数据向计算靠拢”,传统模式下,对数据…
写在前面 之前微信公众号里有一位叫sara的朋友建议我写一下Parallel的相关内容,因为手中商城的重构工作量较大,一时之间无法抽出时间.近日,这套系统已有阶段性成果,所以准备写一下Parallel的相关内容,正好也延续之前的C#并发编程系列. Parallel是并行编程的相关内容,而Parallel.For和Parallel.Foreach又是并行编程中相当重要的方法,所以不能孤立的去讨论Parallel,必须要放到并行编程的讨论中去. 并行化,一般是对所要完成的任务进行划分,并且以并发的方…
http://peghoty.blog.163.com/blog/static/493464092013016113254852/ http://blog.csdn.net/augusdi/article/details/12833235 CUDA存储器模型:http://blog.csdn.net/endlch/article/details/44538801 CUDA限定符:http://blog.csdn.net/shouhuxianjian/article/details/4242728…