http://openaccess.thecvf.com/content_cvpr_2017/papers/Jie_Deep_Self-Taught_Learning_CVPR_2017_paper.pdf Deep Self-Taught Learning for Weakly Supervised Object Localization. Zequn Jie, Yunchao Wei, Xiaojie Jin, Jiashi Feng, Wei Liu 亮点 监督学习中用难例挖掘,弱监督中靠…
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #042eee } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #323333 } p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px "…
研究内容:弱监督时域动作定位 结果:Thumos14 mAP0.5 = 27.0 ActivityNet1.3 mAP0.5 = 34.5 从结果可以看出弱监督这种瞎猜的方式可以PK掉早些时候的一些全监督方法 Code: GitHub P.S.我在机器上复现始终差一点点 Motivation: 发现之前的工作没有考虑到背景类别,会将背景帧误分为动作类别,造成大量FP.本文提出了背景抑制网络BaSNet,引入了额外的背景类,两支镜像网络(一支为base网络,一支为用attention抑制背景的su…
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #042eee } p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "…
记笔记目的:刻意地.有意地整理其思路,综合对比,以求借鉴.他山之石,可以攻玉. <Convolutional Simplex Projection Network for Weakly Supervised Semantic Segmentation>-20180724,一篇来自德国波恩大学与锡根大学的paper. 论文code: https://github.com/briqr/CSPN Abstract The method introduces a novel layer which a…
参考文献:Yancheng Bai and Ming Tang. Robust Tracking via Weakly Supervised Ranking SVM Abstract 通常的算法:utilize the object information contained in the current and previous frames to construct the object appearance model and locate the object with the mode…
https://blog.csdn.net/qq_32417287/article/details/80102466 abstract introduction method overview Deep architecture for place recognition NetVLAD: A Generalized VLAD layer (fVLADfVLAD f_{VLAD}) Max pooling (fmax) Learning from Time Machine data Experi…
新在ICCV上发的弱监督物体检测文章,偷偷高兴一下,贴出我的poster,最近有点忙,话不多说,欢迎交流- https://arxiv.org/pdf/1904.00551.pdf http://openaccess.thecvf.com/content_ICCV_2019/papers/Li_Weakly_Supervised_Object_Detection_With_Segmentation_Collaboration_ICCV_2019_paper.pdf @inproceedings{…
by 南大周志华 摘要 监督学习技术通过学习大量训练数据来构建预测模型,其中每个训练样本都有其对应的真值输出.尽管现有的技术已经取得了巨大的成功,但值得注意的是,由于数据标注过程的高成本,很多任务很难获得如全部真值标签这样的强监督信息.因此,能够使用弱监督的机器学习技术是可取的.本文综述了弱监督学习的一些研究进展,主要关注三种弱监督类型:不完全监督,即只有一部分样本有标签:不确切监督,即训练样本只有粗粒度的标签:以及不准确监督,即给定的标签不一定总是真值. 关键词:机器学习,弱监督学习,监督学习…
UC Berkeley的Deepak Pathak 使用了一个具有图像级别标记的训练数据来做弱监督学习.训练数据中只给出图像中包含某种物体,但是没有其位置信息和所包含的像素信息.该文章的方法将image tags转化为对CNN输出的label分布的限制条件,因此称为 Constrained convolutional neural network (CCNN). 该方法把训练过程看作是有线性限制条件的最优化过程: 其中是一个隐含的类别分布,是CNN预测的类别分布.目标函数是KL-divergen…