剑指 offer set 4 矩形覆盖】的更多相关文章

题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? public class Solution { public int RectCover(int n) { int x = 1, y = 2; if(n <= 2) return n; for(int i = 3; i <= n; i++){ y += x; x = y - x; } return y; } }…
一.题目 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 二.解答思路 如果第一步选择竖方向填充,则剩下的填充规模缩小为n-1: 如果第一步选择横方向填充,则剩下的填充规模缩小为n-2,因为第一排确定后,第二排也就确定了. 因此,递归式为: tectCover(n)= tectCover(n-1)+ tectCover(n-2): 边界条件为: 当n=0时, 总共有0种方法: 当n=1时, 总共有1种方法: 当n=…
总结 1. 斐波那契数列的变形题, 但是稍有隐晦, 有点意思 2. 求解 f(3) 时, 最后一块矩形可以竖着放, 也可以两块矩形横着放, 分别对应于 f(2) 和 f(1) ---------------- 0 | 1 |  2  |  3 ----------------…
原创博文,转载请注明出处! 0.简介 # 本文是牛客网<剑指offer>刷题笔记,笔记索引链接 1.题目 # 用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 2.思路 # 2*1的矩阵覆盖2*8的矩阵的方法f(8):用第一个1*2矩阵覆盖2*8矩阵的最左边时有竖着或横着两种方法. 当1*2矩阵竖着放时,2*8矩阵右边剩余2*7的区域,覆盖2*7区域的方法记为f(7); 当1*2矩阵横着放时,2*8左上角放一个1*2的矩阵…
面试题9:斐波那契数列及其变形(跳台阶.矩形覆盖) 提交网址: http://www.nowcoder.com/practice/c6c7742f5ba7442aada113136ddea0c3?tpId=13&tqId=11160 参与人数:7267  时间限制:1秒  空间限制:32768K 题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项 Fibonacci(int n). 分析: 用递归会TLE,因为有不少地方进行了重复计算,改为循环即可解决(迭代法…
剑指Offer - 九度1390 - 矩形覆盖2014-02-05 23:27 题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入包括一个整数n(1<=n<=70),其中n为偶数. 输出: 对应每个测试案例, 输出用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有的方法数. 样例输入: 4 样例输出: 5 题意分析: 非常典型的斐波那契数…
剑指Offer:矩形覆盖[N1] 题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目思考 我们先把2*8的覆盖方法记为f(8),用一个2*1的小矩形去覆盖大矩形的最右边时有两种选择,横着放或者竖着放, 此时左边的空间为f(6)或f(7),那么f(8)的放置结果为f(6)[右边横着放]+f(7)[右边竖着放] 找规律 f(n)=f(n-1)+f(n-2),斐波那契数列 Java题解 public clas…
题目:斐波那契数列 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). f(n) = f(n-1) + f(n-2) 基本思路 这道题在剑指offer中实际是当作递归的反例来说的. 递归的本质是吧一个问题分解成两个或者多个小问题,如果多个小问题存在互相重叠的情况,那么就存在重复计算. f(n) = f(n-1) + f(n-2) 这种拆分使用递归是典型的存在重叠的情况,所以会造成非常多的重复计算. 另外,每一次函数调用爱内存中都需要分配空间,每…
矩形覆盖 牛客网 剑指Offer 题目描述 我们可以用21的小矩形横着或者竖着去覆盖更大的矩形.请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? class Solution: def rectCover(self, number): if number <= 0: return 0 if number == 1: return 1 if number == 2: return 2 i = 3 f_1 = 1 f_2 = 2 ret = None while i<=nu…
该题目来源于牛客网<剑指offer>专题. 我们可以用21的小矩形横着或者竖着去覆盖更大的矩形.请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 先放21,则f(n-1),先放12,则f(n-2). Go语言实现: func rectCover(n int) int { if n < 1 { return 0 } ​ if n == 1 || n == 2 { return n } ​ return rectCover(n-1) + rectCover(n-2)…