hdu 2232 矩阵 ***】的更多相关文章

一天四个不同的机器人a.b.c和d在一张跳舞毯上跳舞,这是一张特殊的跳舞毯,他由4个正方形毯子组成一个大的正方形毯子,一开始四个机器人分别站在4 块毯子上,舞蹈的每一步机器人可以往临近(两个毯子拥有同一条边视为临近)的一个毯子移动或停留在原来的毯子(同一块毯子可以有多个机器人停留),这个时 候机器人的制造者你想知道经过n步的移动有多少种方式可以让每个毯子上都有机器人停留. dp[i][j][k]表示在第i步时,从j走到k的方案数 那么在第i+1步时从j走到k再走到k1的步数即为dp[i]*dp[…
http://acm.hdu.edu.cn/showproblem.php?pid=4291 凡是取模的都有循环节-----常数有,矩阵也有,并且矩阵的更奇妙: g(g(g(n))) mod 109 + 7  最外层MOD=1e9+7  能够算出g(g(n))的循环节222222224.进而算出g(n)的循环节183120LL.然后由内而外计算就可以 凝视掉的是求循环节的代码 //#pragma comment(linker, "/STACK:102400000,102400000")…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2855 题目大意:求$S(n)=\sum_{k=0}^{n}C_{n}^{k}Fibonacci(k)$ 解题思路: 题目挺吓人的.先把完整组合数+Fibonacci展开来. 利用Fibonacci的特性,从第一项开始消啊消,消到只有一个数: $S(0)=f(0)$ $S(1)=f(2)$ $S(2)=f(4)$ $S(n)=f(2*n)$ 这样矩阵快速幂就可以了,特判$n=0$时的情况. 快速幂矩阵…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4471 解题思路,矩阵快速幂····特殊点特殊处理····· 令h为计算某个数最多须知前h个数,于是写出方程: D = c1 c2 ``` c[h-1] c[h] 1 0 ``` 0 0 0 1 ``` 0 0 0 0   0 0 0 0   1 0 V[x] = f[x] f[x-1] ` ` f[x-h+1] 显然有V[x+1] = D*V[x].D是由系数行向量,一个(h-1)*(h-1)的单…
HDU - 1575 题目: A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973.  Input数据的第一行是一个T,表示有T组数据. 每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据.接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容. Output对应每组数据,输出Tr(A^k)%9973.Sample Input 2 2 2 1 0 0 1 3 99999999 1 2…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757 题意不难理解,当x小于10的时候,数列f(x)=x,当x大于等于10的时候f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10); 所求的是f(x)取m的模,而x,m,a[0]至a[9]都是输入项 初拿到这道题,最开始想的一般是暴力枚举,通过for循环求出f(x)然后再取模,但是有两个问题,首先f(x)可能特别大,其…
How many ways?? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3219    Accepted Submission(s): 1227 Problem Description 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5015 看到这个限时,我就知道这题不简单~~矩阵快速幂,找递推关系 我们假设第一列为: 23 a1 a2 a3 a4 则第二列为: 23*10+3 23*10+3+a1 23*10+3+a1+a2 23*10+3+a1+a2+a3 23*10+3+a1+a2+a3+a4 进一步转化可以得到: 代码: #include <iostream> #include <string.h> usin…
求$G(a,b,n,p) = (a^{\frac {p-1}{2}}+1)(b^{\frac{p-1}{2}}+1)[(\sqrt{a} + \sqrt{b})^{2F_n} + (\sqrt{a} - \sqrt{b})^{2F_n}] (mod p)$ 左边可以看出是欧拉判定准则,那么只有当a,b其中一个满足是模p下的非二次剩余时G()为0. 右边的式子可以先把平方放进去,发现这个已经是通项公式了,那么$a+b+\sqrt{ab}$和$a+b-\sqrt{ab}$就是它的特征根了,反代回二阶…
Kiki & Little Kiki 2 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2650    Accepted Submission(s): 1393 Problem Description There are n lights in a circle numbered from 1 to n. The left of lig…