原文:http://blog.csdn.net/aspirinvagrant/article/details/48415435 GBDT,全称Gradient Boosting Decision Tree,叫法比较多,如Treelink. GBRT(Gradient Boost Regression Tree).Tree Net.MART(Multiple Additive Regression Tree)等.GBDT是决策树中的回归树,决策树分为回归树和分类树,分类树的衡量标准是最大熵,而回归…
一.CART分类与回归树 资料转载: http://dataunion.org/5771.html        Classification And Regression Tree(CART)是决策树的一种,并且是非常重要的决策树,属于Top Ten Machine Learning Algorithm.顾名思义,CART算法既可以用于创建分类树(Classification Tree),也可以用于创建回归树(Regression Tree).模型树(Model Tree),两者在建树的过程稍…
http://www.cnblogs.com/joneswood/archive/2012/03/04/2379615.html 1.      什么是Treelink Treelink是阿里集团内部的叫法,其学术上的名称是GBDT(Gradient Boosting Decision Tree,梯度提升决策树).GBDT是“模型组合+决策树”相关算法的两个基本形式中的一个,另外一个是随机森林(Random Forest),相较于GBDT要简单一些. 1.1    决策树 应用最广的分类算法之一…
由于最近要经常用到XGBOOST的包,不免对相关的GBDT的原理又重新学习了一遍, 发现其中在考虑损失函数的时候,是以对数log进行度量的,囿于误差平方和函数的印象 那么为什么是对数呢?可能是下面的原因: [通俗的解释] 对数损失是用于最大似然估计的.一组参数在一堆数据下的似然值,等于每一条数据的概率之积.而损失函数一般是每条数据的损失之和,为了把积变为和,就取了对数.再加个负号是为了让最大似然值和最小损失对应起来. [专业的解释] 链接:http://www.zhihu.com/questio…
            阿弥陀佛.好久没写文章,实在是受不了了.特来填坑,近期实习了(ting)解(shuo)到(le)非常多工业界经常使用的算法.诸如GBDT,CRF,topic model的一些算法等.也看了不少东西.有时间能够具体写一下,而至于实现那真的是没时间没心情再做了,等回学校了再说吧.今天我们要说的就是GBDT(Gradient Boosting Decision Tree) =====================================================…
GBDT(Gradient Boosting Decision Tree)算法参考:http://blog.csdn.net/dark_scope/article/details/24863289 理解机器学习算法:http://blog.csdn.net/dark_scope/article/details/25485893 协同过滤算法:http://blog.csdn.net/dark_scope/article/details/17228643…
Gradient Boosting Decision Tree,即梯度提升树,简称GBDT,也叫GBRT(Gradient Boosting Regression Tree),也称为Multiple Additive Regression Tree(MART),阿里貌似叫treelink. 首先学习GBDT要有决策树的先验知识. Gradient Boosting Decision Tree,和随机森林(random forest)算法一样,也是通过组合弱学习器来形成一个强学习器.GBDT的发明…
https://www.quora.com/Why-do-people-use-gradient-boosted-decision-trees-to-do-feature-transform Why is linearity/non-linearity important?Most of our classification models try to find a single line that separates the two sets of point. I say that they…
GBDT之前实习的时候就听说应用很广,现在终于有机会系统的了解一下. 首先对比上节课讲的Random Forest模型,引出AdaBoost-DTree(D) AdaBoost-DTree可以类比AdaBoost-Stump模型,就可以直观理解了 1)每轮都给调整sample的权重 2)获得gt(D,ut) 3)计算gt的投票力度alphat 最后返回一系列gt的线性组合. weighted error这个比较难搞,有没有不用动原来的模型,通过输入数据上做文章就可以达到同样的目的呢? 回想bag…
Roadmap Adaptive Boosted Decision Tree Optimization View of AdaBoost Gradient Boosting Summary of Aggregation Models Summary…