Python 实现粒子滤波】的更多相关文章

#转# -*- coding=utf-8 -*-# 直接运行代码可以看到跟踪效果# 红色的小点代表粒子位置# 蓝色的大点表示跟踪的结果# 白色的方框表示要跟踪的目标# 看懂下面两个函数即可from numpy import *from numpy.random import * def resample(weights): n = len(weights) indices = [] # 求出离散累积密度函数(CDF) C = [0.] + [sum(weights[:i+1]) for i in…
粒子滤波确实是一个挺复杂的东西,从接触粒子滤波到现在半个多月,博主哦勒哇看了N多篇文章,查略了嗨多资料,很多内容都是看了又看,细细斟酌.今日,便在这里验证一下自己的修炼成果,请各位英雄好汉多多指教. 讲粒子滤波之前,还得先讲一个叫”贝叶斯滤波”的东西,因为粒子滤波是建立在贝叶斯滤波的基础上的哩.说太多抽象的东西也很难懂,以目标跟踪为例,直接来看这东西是怎么回事吧: 1. 首先咋们建立一个动态系统,用来描述跟踪目标在连续时间序列上的变换情况.简单一点,我们就使用目标的位置(i,j)作为这个动态系统…
上一篇博文已经讲了贝叶斯滤波的原理以及公式的推导:http://www.cnblogs.com/JunhaoWu/p/bayes_filter.html 本篇文章将从贝叶斯滤波引入到粒子滤波,讲诉粒子滤波的原理. 前面我们已经提到,将跟踪目标的运动看作是一个动态系统.系统的状态以目标的状态来表示.这里,不妨将跟踪目标的中心位置作为系统状态 xt=(it,jt).在连续变化的图像序列里,状态xt随时间不断变换.我们的目的是估计t时刻系统的状态,在这个例子中为目标的中心位置. 状态估计问题(目标跟踪…
粒子滤波用于跟踪,参考:http://www.cnblogs.com/tornadomeet/archive/2012/03/18/2404817.html http://blog.csdn.net/hujingshuang/article/details/45535423…
粒子滤波的理论实在是太美妙了,用一组不同权重的随机状态来逼近复杂的概率密度函数.其再非线性.非高斯系统中具有优良的特性.opencv给出了一个实现,但是没有给出范例,学习过程中发现网络上也找不到.learning opencv一书中有介绍,但距离直接使用还是有些距离.在经过一番坎坷后,终于可以用了,希望对你有帮助. 本文中给出的例子跟 我的另一篇博文是同一个应用例子,都是对二维坐标进行平滑.预测 使用方法: 1.创建并初始化 const int stateNum=4;//状态数 const in…
Video来源地址 一直都觉得粒子滤波是个挺牛的东西,每次试图看文献都被复杂的数学符号搞得看不下去.一个偶然的机会发现了Rob Hess(http://web.engr.oregonstate.edu/~hess/)实现的这个粒子滤波.从代码入手,一下子就明白了粒子滤波的原理.根据维基百科上对粒子滤波的介绍(http://en.wikipedia.org/wiki/Particle_filter),粒子滤波其实有很多变种,Rob Hess实现的这种应该是最基本的一种,Sampling Impor…
先介绍概念:来自百科 粒子滤波指:通过寻找一组在状态空间中传播的随机样本来近似的表示概率密度函数,再用样本均值代替积分运算,进而获得系统状态的最小方差估计的过程,波动最小,这些样本被形象的称为"粒子",故而叫粒子滤波.  粒子滤波(PF: Particle Filter)的思想基于蒙特卡洛方法(Monte Carlo methods),它是利用粒子集来表示概率,可以用在任何形式的状态空间模型上.其核心思想是通过从后验概率中抽取的随机状态粒子来表达其分布,是一种顺序重要性采样法(Sequ…
MathWorks从MATLAB 2015a开始推出与ROS集成的Robotics System Toolbox(机器人系统工具箱),它为自主移动机器人的研发提供现成的算法和硬件接口. 粒子滤波基本流程 A particle filter is a recursive, Bayesian state estimator that uses discrete particles to approximate the posterior distribution of the estimated s…
一.背景 与卡曼滤波不同的是,粒子滤波假设隐变量之间(隐变量与观测变量之间)是非线性的,并且不满足高斯分布,可以是任意的关系. 求解的还是和卡曼滤波一样,但由于分布不明确,所以需要用采样的方法求解. 二.重要性采样(importance sampling & SIS) 重要性采样(IS)需要计算p(zt|x1,...,t), t与t-1之间没有递推关系,不易求解 为此引入SIS,转换成求解p(z1,...t|x1,...t),且能够推出递推关系,方便求解 三.重采样Basic Particle…
1)初始化阶段-提取跟踪目标特征 该阶段要人工指定跟踪目标,程序计算跟踪目标的特征,比如可以采用目标的颜色特征.具体到Rob Hess的代码,开始时需要人工用鼠标拖动出一个跟踪区域,然后程序自动计算该区域色调(Hue)空间的直方图,即为目标的特征.直方图可以用一个向量来表示,所以目标特征就是一个N*1的向量V. 2)搜索阶段-放狗 好,我们已经掌握了目标的特征,下面放出很多条狗,去搜索目标对象,这里的狗就是粒子particle.狗有很多种放法.比如,a)均匀的放:即在整个图像平面均匀的撒粒子(u…