上一篇博客将了在数据集线性可分的情况下的支持向量机,这篇主要记录如何通过映射到高维解决线性不可分的数据集和如何通过核函数减少内积计算量的理论思想. [5]径向基函数的核函数:https://www.quora.com/Why-does-the-RBF-radial-basis-function-kernel-map-into-infinite-dimensional-space…
快毕业啦~~记得上一篇论文利用JointBoost+CRF做手绘草图的分割项目在3月份完结后,6月份去实习,9月份也没怎么认真找工作就立刻回来赶论文(由于分割项目与人合作难以写入毕业论文),从9月到1月一直狂写程序,其中过程就如去年10月开始做分割项目一样艰辛,不过现在工作也定了,论文也差不多了,可喜可贺~.这次的论文主要以手绘草图的分类为主,而分类方法我还是用的SVM支持向量机,用SVM做多分类,现在程序也基本完成了,所以想记录一下毕业论文中遇到个各种难题,我看了一些SVM,由于自己数学功底有…
上一篇博客讨论了高维映射和核函数,也通过例子说明了将特征向量映射到高维空间中可以使其线性可分.然而,很多情况下的高维映射并不能保证线性可分,这时就可以通过加入松弛变量放松约束条件.同样这次的记录仍然通过例子来说明松弛变量的作用和必要性.转: 参考文献:http://www.cnblogs.com/jerrylead/archive/2011/03/18/1988415.html…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第6章:SVM 支持向量机. 支持向量机不是很好被理解,主要是因为里面涉及到了许多数学知识,需要慢慢地理解.我也是通过看别人的博客理解SVM的. 推荐大家看看on2way的SVM系列: 解密SVM系列(一):关于拉格朗日乘子法和KKT条件 解密SVM系列(二):SVM的理论基础 解密SVM系列(三):SMO算法原理与实战求解 解密SVM系列(四):SVM非线性分类原理实验 基本概念 SVM -…
第一步.初步了解SVM 1.0.什么是支持向量机SVM 要明白什么是SVM,便得从分类说起. 分类作为数据挖掘领域中一项非常重要的任务,它的目的是学会一个分类函数或分类模型(或者叫做分类器),而支持向量机本身便是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中. 支持向量机(SVM)是90年代中期发展起来的基于统计学习理论的一种机器学习方法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最小化,从而达到在统计样本量较少的情况下,亦能获得良好统计规律的目的. 通俗来…
(整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) SVM(Support Vector Machines)系列会循序渐进地给大家讲解支持向量机,内容有点多,打算分四篇博文介绍.SVM是最好的有监督学习算法之一,它有很多忠实的fans,执着地认为它就是最好的.为了讲述SVM,我们从线性可分数据开始(后来会去掉线性可分的约束),引出Margin(间隔)的概念:接下来会讨论optimal margin classifi…
注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对偶函数的对偶因子α:第二部分是SMO算法对于对偶因子的求解:第三部分是核函数的原理与应用,讲核函数的推理及常用的核函数有哪些:第四部分是支持向量机的应用,按照机器学习实战的代码详细解读. 机器学习之支持向量机(一):支持向量机的公式推导 机器学习之支持向量机(二):SMO算法 机器学习之支持向量机(…
  支持向量机是Vapnik等人于1995年首先提出的,它是基于VC维理论和结构风险最小化原则的学习机器.它在解决小样本.非线性和高维模式识别问题中表现出许多特有的优势,并在一定程度上克服了"维数灾难"和"过学习"等传统困难,再加上它具有坚实的理论基础,简单明了的数学模型,使得支持向量机从提出以来受到广泛的关注,并取得了长足的发展 .支持向量机(Support Vector Machine, SVM)本身是一个二元分类算法,是对感知机算法模型的一种扩展,现在的 SV…
SVM支持向量机的基本原理 对于很多分类问题,例如最简单的,一个平面上的两类不同的点,如何将它用一条直线分开?在平面上我们可能无法实现,但是如果通过某种映射,将这些点映射到其它空间(比如说球面上等),我们有可能在另外一个空间中很容易找到这样一条所谓的“分隔线”,将这些点分开. SVM基本上就是这样的原理,但是SVM本身比较复杂,因为它不仅仅是应用于平面内点的分类问题.SVM的一般做法是:将所有待分类的点映射到“高维空间”,然后在高维空间中找到一个能将这些点分开的“超平面”,这在理论上是被完全证明…
公号:码农充电站pro 主页:https://codeshellme.github.io 上一篇介绍了 SVM 的原理和一些基本概念,本篇来介绍如何用 SVM 处理实际问题. 1,SVM 的实现 SVM 算法即可以处理分类问题,也可以处理回归问题. sklearn 库的 svm 包中实现了下面四种 SVM 算法: LinearSVC:用于处理线性分类问题. SVC:用于处理非线性分类问题. LinearSVR:用于处理线性回归问题. SVR:用于处理非线性回归问题. LinearSVC/R 中默…