【BZOJ 3527】【ZJOI 2014】力】的更多相关文章

Description 给出n个数qi,给出Fj的定义如下: $$F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j}\frac{q_i q_j}{(i-j)^2 }$$ 令Ei=Fi/qi,求Ei. Input 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<1000000000 Output n行,第i行输出Ei.与标准答案误差不超过1e-2即可. Sample Input 5 400…
题面 事实说明只会FFT板子是没有用的,还要把式子推成能用FFT/转化一下卷积的方式 虽然这个题不算难的多项式卷积 稍微化简一下可以发现实际是$q_i$和$\frac{1}{(i-j)^2}$在卷,然后每两项是在向下标差值的那项做贡献,而直接卷是向两项下标和的那项做贡献.于是把前半部分的$\frac{1}{(i-j)^2}$做成负的,后半段的做成正的,这样卷完后半段就是题目要求的东西.当然把一个序列反过来再卷也是对的 #include<cmath> #include<cstdio>…
BZOJ 3527 力 | 分治 题意 给出数组q,$E_i = \sum_{i < j} \frac{q_i}{(i - j) ^ 2} - \sum_{i > j} \frac{q_i}{(i - j) ^ 2} $. 题解 求出减号前面一部分(设为A(i)),再求出减号后面的一部分(设为B(i)). 具体怎么求呢?还是转换成多项式乘法. 设\(f(i) = q[i]\),翻转后成为\(f'(i)\). 设\(g(i) = \frac{1}{i^2}, g(0) = 0\). \[A(i)…
[BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u,v之间有一条边,图上u,v对应的点之间也有一条边. \(n \leq 17\) 分析 看到\(n \leq 17\),我们应该想到状态压缩.但直接用子集dp的时间复杂度为\(O(3^nn^3)\),会TLE.所以我们压缩的状态可能有问题,考虑优化. 显然题目给了两个限制: 原树中的每条边都要在图中…
题目大意 有一个 (n times m) 的网格,每一个格子上是羊.狼.空地中的一种,羊和狼可以走上空地.现要在格子边上建立围栏,求把狼羊分离的最少围栏数. (1 leqslant n, ; m leqslant 100) 题目链接 BZOJ 1412 CodeVS 2351 题解 最小割. 从源点向羊/狼连一条容量无限的边,从狼/羊向汇点连一条容量无限的边.考虑相邻的两格,若是一狼一羊,则连一条容量为 (1) 的边(分割狼羊),若至少有一方为空地,也连一条容量为 (1) 的边(狼羊会走上空地)…
代换一下变成多项式卷积,这里是的答案是两个卷积相减,FFT求一下两个卷积就可以啦 详细的题解:http://www.cnblogs.com/iwtwiioi/p/4126284.html #include<cmath> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int N = 500003; const double Pi = acos(…
3527: [Zjoi2014]力 Time Limit: 30 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 2003  Solved: 1196 Description 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. Input 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<1000000000 Output n行,第i行输出Ei.与标准答案误差不超过1e-2即可. S…
Description 求 \(E_i=\sum _{j=0}^{i-1} \frac {q_j} {(i-j)^2}-\sum _{j=i+1}^{n-1} \frac{q_j} {(i-j)^2}\) Sol FFT. 我们可以发现他是一个卷积的形式,每次从\(i^2\) 卷到 \((n-i-1)^2\) . 既然是卷积,那么直接FFT就好了,但是FFT是让指数相等,也就是这里面的下标相等,所以必须要翻转这两个数组其中一个就可以了,随便翻就行. 然后从某一个下下标位置开始输出. Code /…
BZOJ 3527: [ZJOI2014]力(FFT) 题意: 给出\(n\)个数\(q_i\),给出\(Fj\)的定义如下: \[F_j=\sum \limits _ {i < j} \frac{q_iq_j}{(i-j)^2}-\sum \limits _{i >j} \frac{q_iq_j}{(i-j)^2}.\] 令\(E_i=F_i/q_i\),求\(E_i\). 题解: 一开始没发现求\(E_i\)... 其实题目还更容易想了... \[E_i=\sum\limits _{j&l…
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3527 题解: FFT求卷积. $$\begin{aligned}E_i&=\frac{F_i}{q_i}\\&=\sum_{k<i}\frac{q_k}{(i-k)^2}-\sum_{k>i}\frac{q_k}{(i-k)^2}\\&=\sum_{k=1}^{n}{q_kP(i-k)}\end{aligned}$$ 其中, $$P(x)=\begin{cases…