python之pandas&&DataFrame(二)】的更多相关文章

简单操作 Python-层次聚类-Hierarchical clustering >>> data = pd.Series(np.random.randn(10),index=[['a','a','a','b','b','c','c','d','d','d'],[1,2,3,1,2,1,2,3,1,2]]) >>> data a 1 -0.168871 2 0.828841 3 0.786215 b 1 0.506081 2 -2.304898 c 1 0.864875…
Python:pandas(一) 这一章翻译总结自:pandas官方文档--General functions 空值:pd.NaT.np.nan //判断是否为空 if a is np.nan: ... 数据操作 melt 将DataFrame从一个宽类型转化为长类型:固定某一列,看该列变量其他列的值 pivot 用某些列将DataFrame变形(不是常见的大小变形) cut 切割一个一维数据为离散的区间 qcut 与cut相似,区别在于cut是等长切割,qcut是等元素数切割 merge 连接…
本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) 下面将是在知识点一的基础上继续总结. 13. 简单计算 新建一个数据表df import pandas as pd df = pd.DataFrame({"地区": ["A区","B区", "C区"], "前半年销量": [3500, 4500,3800], "后半年销…
1.Series  Series是一个一维数组 pandas会默认从0开始作为Series的index >>> test = pd.Series(['num0','num1','num2','num3']) >>> test 0 num0 1 num1 2 num2 3 num3 dtype: object 也可以自己指定index >>> test = pd.Series(['num0','num1','num2','num3'],index=['A…
用法:DataFrame.drop(labels=None,axis=0, index=None, columns=None, inplace=False) 参数说明:labels 就是要删除的行列的名字,用列表给定axis 默认为0,指删除行,因此删除columns时要指定axis=1:index 直接指定要删除的行columns 直接指定要删除的列inplace=False,默认该删除操作不改变原数据,而是返回一个执行删除操作后的新dataframe:inplace=True,则会直接在原数…
本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) Python数据分析--Pandas知识点(二) 下面将是在知识点一, 二的基础上继续总结. 前面所介绍的都是以表格的形式中展现数据, 下面将介绍Pandas与Matplotlib配合绘制出折线图, 散点图, 饼图, 柱形图, 直方图等五大基本图形. Matplotlib是python中的一个2D图形库, 它能以各种硬拷贝的格式和跨平台的交互式环境生成高质量的图形,…
Ref: Pandas Tutorial: DataFrames in Python Ref: pandas.DataFrame Ref: Pandas:DataFrame对象的基础操作 Ref: Creating, reading, and writing reference pandas.DataFrame() pandas.Series() pandas.read_csv() pandas.DataFrame.shape pandas.DataFrame.head pandas.read_…
pandas是基于NumPy构建的模块,含有使数据分析更快更简单的操作工具和数据结构,最常用的数据结构是:序列Series和数据框DataFrame,Series类似于numpy中的一维数组,类似于关系表的一列:而DataFrame类似于二维的关系表. >>> import pandas as pd >>> from pandas import Series,DataFrame 一,数据类型 用dtype属性来显示元素的数据类型,pandas主要有以下几种dtype:…
Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成. 1.2 Series的字符串表现形式为:索引在左边,值在右边. 2. pandas的数据结构DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值.字符串.布尔值的). dataframe中的数据是以一个或者多个二位块存放的(…
Pandas是用于数据操纵和分析,建立在Numpy之上的.Pandas为Python带来了两种新的数据结构:Pandas Series和Pandas DataFrame,借助这两种数据结构,我们能够轻松直观地处理带标签数据和关系数据. Pandas功能: 允许为行和列设定标签 可以针对时间序列数据计算滚动统计学指标 轻松处理NaN值 能够将不同的数据集合并在一起 与Numpy和Matplotlib集成 Pandas Series Pandas series 是像数组一样的一维对象,可以存储很多类…